ANALOG
DEVICES

AN-217
APPLICATION NOTE

ONE TECHNOLOGY WAY e P.O. BOX 9106 ® NORWOOD, MASSACHUSETTS 02062-9106 e 617/329-4700

Audio Applications of the ADSP Family
(IR Filters)

INFINITE IMPULSE RESPONSE (lIR) FILTERS

Compared to the FIR filter, an IIR filter can often be much
more efficient in terms of attaining certain performance
characteristics with a given filter order. This is because
the IIR filter incorporates feedback and is capable of
realizing both poles and zeros of a system transfer func-
tion, whereas the FIR filter is only capable of realizing
the zeros (although the FIR filter is still more desirable in
many applications, because of features such as stability
and the ability to realize exactly linear phase responses).

Direct Form HR Filter

The IIR filter can realize both the poles and zeros of a
system because it has a rational transfer function, de-
scribed by polynomials in z in both the numerator and
the denominator:

M
Ebk z7k

Hiz) = k=0

N
1 - E azk
k=1

The difference equation for such a system is described
by the foliowing:

M N
yin = > bixink) + >, axyin—k)

k=0 k=1

In most applications, the order of the two polynomials M
and N are the same.

The roots of the denominator determine the pole ioca-
tions of the filter, and the roots of the numerator deter-
mine the zero locations. There are, of course, several
means of implementing the above transfer function with
an IR filter structure. The “direct form’ structure pre-
sented in Listing 1 implements the difference equation
above.

Note that there is a single delay line buffer for the recur-
sive and nonrecursive portions of the filter (Oppenheim
and Schafer’s Direct Form Il). The sum-of-products of the
a values and the delay line values are- first computed,

DIGITAL SIGNAL PROCESSING PRODUCTS 9-37

followed by the sum-of-products of the b values and the
delay line values.

.MODULE diriir_sub;

{
Direct Form Il IR Filter Subroutine

Calling Parameters
MR1 = Input sample (x(n])
MRO = 0
10 — Delay line buffer current location (x(n-1})
LO = Filter length
15 —» Feedback coefficients (a[1], al2], . .. alN])
L5 = Filter length — 1
186 — Feedforward coefficients (b[0], b{1], ... b[N])
L6 = Filter length
MO =0
M1,M4 = 1
CNTR = Fiiter length — 2
AX0 = Filter length — 1

Return Values
MR1 = output sample (yin})
10 — delay line current iocation (x[n-1})
5 — feedback coefficients
16 — feedforward coefficients

Aitered Registers
MXO0,MYO0,MR

Computation Time
((N=2) + (N - 1)) + 10 + 4 cycles (N = M = Filter order}

All coefficients and data values are assumed to be in 1.15 format.

}
ENTRY dirir;

diriir: MX0=DM(I0,M1), MYO=PM(I15,M4);
DO poleloop UNTIL CE;
polelcop: MR=MR+MX0*MYO(SS), MX0=DM(I0,M1), MYO=PM(I5,M4);
MR=MR+MX0*MYO(RND);
CNTR=AX0;
DM(10,M0)=MR1;
MR=0, MX0=DM(I0,M1), MYO=PM(I8,M4);
DO zeroloop UNTIL CE;

zeroloop: MR=MR-+MX0*MY0(SS), MX0=DM(l0,M1), MYO=PM(I6,M4);
MR=MR+MX0*MYO(RND);
MODIFY (10,M2);
RTS;

.ENDMOOD;

Listing 1. Direct Form IR Filter

Cascaded Biquad IR Filter
A second-order biguad IIR filter section is shown on
Figure 1. its transfer function in the z-domain is:

Hiz)= Y\ZUXiz)=(Bg+ B:1Z ™+ Bz A1 + Ayz™ ' + Ajz73)

" where A,, A,, B,, B, and B, are coefficients that deter-
mine the desired impuise response of the system H(z).
Furthermore, the corresponding difference equation for
a biquad section is: '

Yin)=BpX(n)+ B X{n— 1)+ B X(n—2)— AY(n—-1)—AyY(In-2)

Figure 1. Second-Order Biquad IIR Filter Section

Higher-order filters can be obtained by cascading sev-
eral biquad sections with appropriate coefficients. An-
other way to design higher-order filters is to use only
one complicated single section. This approach is called
the direct form implementation. The biquad implemen-
tation executes siower but generates smaller numerical
~ arrors than the direct form implementation. The biquads
can be scaled separately and then cascaded to minimize
the coefficient quantization and the recursive accumula-
tion errors. The coefficients and data in the direct form
implementation must be scaled all at once, which gives
rise to larger errors. Another disadvantage of the direct
form implementation is that the poles of such single-
stage high-order polynomials get increasingly sensitive
to quantization errors. The second-order polynomial sec-
tions (i.e., biquads) are less sensitive to quantization
effects.

An ADSP-2100 subroutine that implements a high-order
filter is shown in Listing 2. The subroutine is arranged as
a module and is labeled biquad_sub. There are a num-
ber of registers that need.to be initialized in order to
execute this subroutine. it may be sufficient to do this
initialization only once (e.g., at power-up} if other exe-
cuted algorithms do not need these registers. In most
typical cases, however, some of these registers may
need to be set every time the biquad_sub routine is
called. It may sometimes be beneficial, from a modular
software point of view, always to initialize all the setup
registers as a part of this subroutine.

The biquad_sub routine takes its input from the SR1
register. This register must contain the 16-bit input X(n).
X(n) is assumed to be already computed before this
subroutine is called. The output of the filter is also made
available in the SR1 register.

9-38 DIGITAL SIGNAL PROCESSING PRODUCTS

After the initial design of a high-order filter, all coeffi-
cients must be scaled down separately in each biquad
stage. This is necessary in order to conform to the 16-bit
fixed-point fractional number format as well as to ensure
that overflows will not occur in the final multiply-
accumulate operations in each stage. The scaled-down
coefficients are the ones that get stored in the proces-
sor's memory. The operations in each biquad are per-
formed with scaled data and coefficients and are
eventually scaled up before being output to the next
one. The choice of a proper scaling factor depends
greatly on the design objectives, and in some cases it
may even be unnecessary. The filter coefficients are usu-
ally designed with a commercial software package in
higher than 16-bit precision” arithmetic. System perfor-
mance deviates from ideal when such high precision
coefficients are quantized to 16 bits and further scaled
down. In systems that require stringent specifications,
careful simulations of quantization and scaling effects
must be performed.

During the initialization of the biquad_sub routine, the
index register 10 points to the data memory buffer that
contains the previous error inputs and the previous bi-
quad section outputs. This buffer must be initialized to
zero at powerup uniess some nonzero initial condition is
desired. The index register |1 points to another buffer in
data memory that contains the individual scale factors
for each biquad. The buffer length register L1 is set to
zero if the filter has only one biquad section. in the case
of multiple biquads, L1 is initialized with the number of
biquad sections. The index register |4, on the other
hand, points to the circular program memory buffer that
contains the scaled biquad coefficients. These coeffi-
cients are stored in the order: B,, B,, B,, A, and A, for
each biquad. All of the individual biquad coefficient
groups must be stored in the same order in which the
biquads are cascaded, such as: B,, By, By, Ay A,, B2*,
B,*, Bo*, A,* A,*, B,**, etc. The buffer length register
L4 must be set to the value of {5 x number of biquad
sections). Finally, the loop counter register CNTR must
be set to the number of biquad sections, since the filter
code will be executed as a loop.

The core of the biquad_sub routine starts its execution at
the biquad label. The routine is organized in a looped
fashion where the end of the loop is the instruction
labeled sections. Each iteration of the loop executes the
computations for one biquad. The number of loops to be
executed is determined by the CNTR register contents.
The SE register is loaded with the appropriate scaling
tactor for the particular biquad at the beginning of each
loop iteration. After this operation, the coefficients and
the data values are fstched from memory in the se-
quence in which they have been stored. These numbers
are multiplied and accumuiated until all of the values for
a particular biquad have been accessed. The result of the
last muitiply/accumulate is rounded to 16 bits and up-
shifted by the scaling value. At this point, the biquad
loop is executed again, or the filter computations are
completed by doing the final update to the delay line.

1ne gelay IINes Tor gaia values are always being upadated
within the biquad loop as well as outside of it.

The filter coefficients must be scaled appropriately so
that no overflows occur after the upshifting operation
between the biquads. If this is not ensured by design, it
may be necessary to include some overflow checking
between the biquads.

The execution time for an Nth order biquad_sub routine
can be calculated as follows (assuming that the appro-
priate registers have been initialized and N is a power
of 2):

ADSP-2101/2102: (8 x N/2) + 4 processor cycles
ADSP-2100/2100A: (8 x N/2) + 4 + 5 processor cycles

it may take up to a maximum of 12 cycles to initialize the
appropriate registers every time the filter is called, but
typically this number will be lower.

MODULE biquad_sub:

{ Nth order cascaded biquad filter subroutine

}

.ENTRY biquad; l

Calling Parameters:

SR1 = input X(n)
10 — delay line buffer for X(n-2), X{n—1),

Y(n-2), Y(n-1)
=0
11 — scaling factors for sach biquad section
L1 = 0 (in the case of & single biquad)
L1 = number of biquad sections

{for muitiple biquads)

14 — scaled biquad coefficients
L4 = 5 x [number of biquads]
MO, M4 =1
M1 = -3
M2 = 1 {in the case of muitiple biquads)
M2 = 0 (in the case of a single biquad)
M3 = (1 - length of delay line buffer)

Return Value:

SR1 = output sample Y(n)

Altered Registers:

SE, MX0, MX1, MY0, MR, SR

Computation Time (with N even):

ADSP-2101/2102: (8 x N/2) + 5 cycles
ADSP-2100/2100A: (8 x N/2) + 5 + 5 cycles

All coefficients and data vaiues are assumed to be in 1.15 format

biquad: CNTR = number_of_biquads

DO sections UNTIL CE;

SE=DM(11,M2);

MX0=DM(I0,M0), MY0=PM(i4,M4);

MR=MX0*MY0(SS), MX1=DM{I0,M0), MYO=PM(14,M4);
MR=MR+MX1*MYO(SS), MYO=PM(I4,M4);
MR=MR+SR1*MY0(SS), MX0=DM(I0,M0), MYO=PM(I4,M4);
MR=MR+MX0*MYO{SS), MX0=DM(I0,M1), MYO=PM(I4,M4);
DM(i10,M0)=MX1, MR=MR+MX0*MYO(RND);

sections: DM(I0,M0)=8R1, SR=ASHIFT MR1 (HI);

DM(10,M0)=MX0;
DM(I0,M3)=SR1;
RTS;

.ENDMOD;

Listing 2. Cascaded Biquad IIR Filter

DIGITAL SIGNAL PROCESSING PRODUCTS 9-39

