

AN-1160
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Cortex-M3 Based ADuCxxx
Serial Download Protocol

Rev. 0 | Page 1 of 8

INTRODUCTION
A key feature of the Cortex-M3 based ADuCxxx is the ability
of the devices to download code to their on-chip Flash/EE
program memory while in-circuit. An in-circuit code down-
load is conducted over the device UART serial port, and is thus
commonly referred to as a serial download.

The serial download capability allows developers to reprogram
the part while it is soldered directly onto the target system, thus
avoiding the need for an external device programmer. The serial
download feature also enables system upgrades to be performed
in the field; all that is required is serial port access to the
Cortex-M3 based ADuCxxx. This means manufacturers can
upgrade system firmware in the field without having to swap
out the device.

Any Cortex-M3 based ADuCxxx device can be configured for
serial download mode via a specific pin configuration at power-
on or during the application of the external reset signal.

Refer to the device-specific user guide for the entry criteria to
serial download mode. For example on the ADuCM360, the
P2.2 input pin is checked during kernel execution. If this pin is
low and RSTSTA.EXTRST = 0x1 at the time that the P2.2 input
pin is checked, then the part enters serial download mode.

In this mode, an on-chip resident loader routine is initiated. The
on-chip loader configures the device UART and, via a specific
serial download protocol, communicates with any host machine
to manage the download of data into its Flash/EE memory
spaces. The format of the program data to download must be
little endian.

Note that serial download mode operates within the standard
supply rating of the part. Therefore, there is no requirement for
a specific high programming voltage because it is generated
on-chip.

As part of the development tools, a Windows® program
(CM3WSD.exe) is provided by Analog Devices, Inc. This
program allows the user to download code from PC serial
ports COM1 to COM31, inclusive, to the Cortex-M3 based
ADuCxxx device. Note, however, that any master host machine
(PC, microcontroller, or DSP) can download to the Cortex-M3
based ADuCxxx device once the host machine adheres to the
serial download protocols detailed in this application note.

This application note details the Cortex-M3 based ADuCxxx
device serial download protocol, allowing end users to under-
stand and successfully implement this protocol (embedded host
to embedded Cortex-M3 based ADuCxxx device) in an end-
target system.

For the purposes of clarity, the term host refers to the host machine
(PC, microcontroller, or DSP) attempting to download data to
the Cortex-M3 based ADuCxxx device. The term loader refers to
the on-chip serial download firmware on the Cortex-M3 based
ADuCxxx device.

http://www.analog.com/aducm360
www.analog.com
www.analog.com/an-1160

AN-1160 Application Note

Rev. 0 | Page 2 of 8

TABLE OF CONTENTS
Introduction .. 1
Revision History ... 2
Running the MicroConverter Loader .. 3
The Physical Interface .. 3

Defining the Data Transport Packet Format3
Commands ..4
Command Example ..5
LFSR Code Example..6

REVISION HISTORY
9/12—Revision 0: Initial Version

Application Note AN-1160

Rev. 0 | Page 3 of 8

RUNNING THE MICROCONVERTER LOADER
The loader on the ADuCxxx device is initiated by pulling a
specific GPIO pin low through a resistor (typically 1 kΩ pull-
down) and resetting the part by toggling the RESET input pin
on the part itself. Other resets, such as watchdog reset, power-
on reset, and software reset with the specific GPIO pulled low,
will not result in serial download mode entry. Refer to the
device user guide for the entry criteria to serial download mode.

For example, on the ADuCM360, the P2.2 input pin is checked
during kernel execution. If this pin is low and RSTSTA.EXTRST
= 0x1 at the time that the P2.2 input pin is checked, then the part
enters serial download mode.

THE PHYSICAL INTERFACE
Once triggered, the loader waits for the host to send a back-
space (BS = 0x08) character to synchronize. The loader measures
the timing of this character and, accordingly, configures the
ADuCxxx UART serial port to transmit/receive at the host’s
baud rate with 8 data bits and no parity. The baud rate must
be between 600 bps and 115,200 bps, inclusive.

On receiving the backspace, the loader immediately sends the
following 24-byte ID data packet:

15 bytes = product identifier
3 bytes = hardware and firmware version number
4 bytes = reserved for future use
2 bytes = line feed and carriage return

Figure 1. Example ID Data Packet

DEFINING THE DATA TRANSPORT PACKET FORMAT
Once the UART has been configured, a data transfer can begin.
The general communications data transport packet format is
shown in Table 1.

Packet Start ID Field

The first field is the packet start ID field, which contains two
start characters (0x07 and 0x0E). These bytes are constant and
are used by the loader to detect a valid data packet start.

Number of Bytes Field

The next field is the total Number of Bytes field. The minimum
number of bytes is five, which corresponds to the Command
and Value fields. The maximum number of bytes allowed is 255:
a command function, a 4-byte value, and 250 bytes of data.

Command Field (Data 1)

The Command field describes the function of the data packet.
One of four valid command functions is allowed. The four
command functions are described by one of four ASCII
characters: E, W, V, or R. The list of data packet command
functions is shown in Table 2.

Value Field (Data 2 to Data 5)

The Value field contains a 32-bit value in big endian format.

Data Bytes Field (Data 6 to Data 255)

The Data Bytes field contains a maximum of 250 data bytes.

Checksum Field

The data packet checksum is written into the Checksum field.
The twos complement checksum is calculated from the summa-
tion of the hexadecimal values in the Number of Bytes field and
the hexadecimal values in the Data 1 to Data 255 fields (as many
as exist). The checksum is the twos complement value of this
summation. Thus, the LSB of the sum of all the bytes from the
number of data bytes to the checksum inclusive should be 0x00.
This can also be expressed mathematically as

CS = 0x00 − (Number of Bytes + ∑
−1N

255

 Data Byte
N
)

Expressed differently, the 8-bit sum of all bytes excluding the
Start ID must be 0x00.

Acknowledge of Command

The loader routine issues a BEL (0x07) as a negative response
or an ACK (0x06) as a positive response to each data packet.

A BEL is transmitted by the loader if it receives an incorrect
checksum or an invalid address. The loader does not give a
warning if data is downloaded over old (unerased) data. The
PC interface must ensure that any location where code is
downloaded is erased.

Table 1. Data Transport Packet Format
Start ID No. of Bytes Command Value Data Bytes Checksum
ID0 ID1 Data 1 Data 2 Data 3 Data 4 Data 5 Data [x] CS
0x07 0x0E 0x05 to 0xFF E, W, V, or R MSB LSB 0x00 to 0xFF 0x00 to 0xFF

ADuCxxx IS THE
PRODUCT ID

ADuCxxx<space><space><space>128<space>A3Y<space><space><space><space><\n><\r>

128 CORRESPONDS
TO THE MEMORY

SIZE MODEL

A3Y MEAN A SILICON REV. A AND
A VERSION 3 LOADER. Y IS THE
LOADER’S VERSION REVISION 10

88
5-

00
1

http://www.analog.com/aducm360

AN-1160 Application Note

Rev. 0 | Page 4 of 8

COMMANDS
The complete list of commands implemented in the on-chip
loader is shown in Table 2.

Erase Command

The erase command allows the user to erase Flash/EE from a
specific start page address determined by the Value field. This
command also includes the number of pages to erase.

If the address is 0x00000000 and the number of pages is 0x00,
the loader interprets this as a mass erase command, erasing the
entire user code space.

The data packet for the erase command is shown in Table 3.

Write Command

The write command includes the number of data bytes (5 + x),
the command, the address of the first data byte to program,
and the data bytes to program. The bytes are programmed into
Flash/EE as they arrive. The loader sends a BEL if the checksum
is incorrect or if the address received is out of range. If the host
receives a BEL from the loader, the download process should be
aborted and the entire download sequence started again.

Verify Command

The loader requires two pieces of information to verify the
contents of a page,the contents of the last 4 bytes of the page
and the 24-bit LFSR of the page excluding the last 4 bytes (see
the LFSR Code Example section).

To verify a page, a two-step sequence must be followed. Repeat
this two-step sequence for each page to be verified.

1. Send the value 0x80000000 in the Value field and the last
4 bytes of the page in the Data Bytes field.

2. Send the start page address in the Value field and the result
of the SIGN command of the page in Data Bytes field.

After receiving these two packets, the loader computes the LFSR
of the specified page and compares it to the supplied value. If it
is correct and the value at Address 0x1FC of that page matches
the value specified in Step 1, ACK (0x06) is returned; otherwise,
BEL (0x07) is returned.

Remote Reset Command

Once the host has transmitted all data packets to the loader,
the host can send a final packet instructing the loader to
perform a reset. A software self-reset is implemented. The
Value field should always be 0x1.

The host should ensure that the specific GPIO pin used to
initiate the serial programming is no longer asserted before
issuing this command. When the part resets, re-enter the kernel
as normal. The loader entry check is performed once more,
thus the specific GPIO pin must be de-asserted at this time.
(The kernel does not modify the RSTSTA, so the check for an
external reset still detects that an external reset occurred).
Table 7 shows an example of a Remote Reset.

Table 2. Data Packet Command Functions
Command Functions Command Byte in Data 1 Field Loader Positive Acknowledge Loader Negative Acknowledge
Erase Page E (0x45) ACK (0x06) BEL (0x07)
Write W (0x57) ACK (0x06) BEL (0x07)
Verify V (0x56) ACK (0x06) BEL (0x07)
Remote Reset R (0x52) ACK (0x06) BEL (0x07)

Table 3. Erase Flash/EE Memory Command
Start ID No. of Bytes Command Value No. of Pages Checksum

ID0 ID1 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 CS
0x07 0x0E 0x06 E (0x45) 0x00 ADR[23:16] ADR[15:8] ADR[7:0] 0x01 to 0xFF 0x00 to 0xFF

Table 4. Write Flash/EE Memory Command
Start ID No. of Bytes Command Value Data Bytes Checksum

ID0 ID1 Data 1 Data 2 Data 3 Data 4 Data 5 Data [x] CS
0x07 0x0E 5 + x (0x06 to 0xFF) W (0x57) 0x00 ADR[23:16] ADR[15:8] ADR[7:0] 0x00 to 0xFF 0x00 to 0xFF

Application Note AN-1160

Rev. 0 | Page 5 of 8

Table 5. Verify Flash/EE Memory Command, Step 1

Start ID
No. of
Bytes Command Value Data Bytes Checksum

ID0 ID1 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 CS

0x07 0x0E 0x09 V (0x56) 0x80 0x00 0x00 0x00 Data at
0x1FC

Data at
0x1FD

Data at
0x1FE

Data at
0x1FF

0x00 to
0xFF

Table 6. Verify Flash/EE Memory Command, Step 2

Start ID
No. of
Bytes Command Value Data Bytes Checksum

ID0 ID1 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 CS
0x07 0x0E 0x09 V (0x56) 0x00 ADR[2

3:16]
ADR[15:
8]

ADR[7:0] LFSR[0:7] LFSR[15:8] LFSR
[23:16]

0x00 0x00 to
0xFF

Table 7. Remote Reset Command

Start ID
No. of
Bytes Command Value Checksum

ID0 ID1 Data 1 Data 2 Data 3 Data 4 Data 5 CS
0x07 0x0E 0x05 R (0x52) 0x00 0x00 0x00 0x01 0xA8

COMMAND EXAMPLE
The following is an example of data captured using a port analyzer.

Erase Command

Erase 1 page at 0x00000200,
IRP_MJ_WRITE Length 10: 07 0E 06 45 00 00 02 00 01 B2
IRP_MJ_READ Length 1 : 06

Mass Erase entire user space
IRP_MJ_WRITE Length 10: 07 0E 06 45 00 00 00 00 00 B5
IRP_MJ_READ Length 1: 06

Write Command

Write 16 data bytes starting at 0x00000200,
IRP_MJ_WRITE Length 25: 07 0E 15 57 00 00 02 00 77 FF 2C B1 00 20 00 F0 5A FC 08 B1 01 20 00 E0 1F
IRP_MJ_READ Length 1 : 06

Verify Command

Value at 0x1FC for the next verify command is specified to be 0x11223344
IRP_MJ_WRITE Length 13: 07 0E 09 56 80 00 00 00 44 33 22 11 77
IRP_MJ_READ Length 1 : 06

Verify of page at 0x00000200, LFSR specified to be 0x00841B81, last value will be checked against 0x11223344
IRP_MJ_WRITE Length 13: 07 0E 09 56 00 00 02 00 81 1B 84 00 7F
IRP_MJ_READ Length 1 : 06

Remote Reset Command

IRP_MJ_WRITE Length 9: 07 0E 05 52 00 00 00 01 A8
IRP_MJ_READ Length 1: 06

AN-1160 Application Note

Rev. 0 | Page 6 of 8

LFSR CODE EXAMPLE

The signature is a 24-bit CRC with the polynomial 1562324 +++++ xxxxx . The initial value is 0xFFFFFF.

long int GenerateChecksumCRC24_D32(unsigned long ulNumValues,unsigned long *pulData)
{
 unsigned long i,ulData,lfsr = 0xFFFFFF;

 for (i= 0x0; i < ulNumValues;i++)
 {
 ulData = pulData[i];
 lfsr = CRC24_D32(lfsr,ulData);
 }

 return lfsr;
}

static unsigned long CRC24_D32(const unsigned long old_CRC, const unsigned long Data)
{
 unsigned long D [32];
 unsigned long C [24];
 unsigned long NewCRC [24];
 unsigned long ulCRC24_D32;
 unsigned long int f, tmp;
 unsigned long int bit_mask = 0x000001;

 tmp = 0x000000;
 // Convert previous CRC value to binary.
 bit_mask = 0x000001;
 for (f = 0; f <= 23; f++)
 {
 C[f] = (old_CRC & bit_mask) >> f;
 bit_mask = bit_mask << 1;
 }

 // Convert data to binary.
 bit_mask = 0x000001;
 for (f = 0; f <= 31; f++)
 {
 D[f] = (Data & bit_mask) >> f;
 bit_mask = bit_mask << 1;
 }

 // Calculate new LFSR value.
 NewCRC[0] = D[31] ^ D[30] ^ D[29] ^ D[28] ^ D[27] ^ D[26] ^ D[25] ^
 D[24] ^ D[23] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
 D[12] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^ D[6] ^
 D[5] ^ D[4] ^ D[3] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^
 C[2] ^ C[3] ^ C[4] ^ C[5] ^ C[6] ^ C[7] ^ C[8] ^ C[9] ^
 C[15] ^ C[16] ^ C[17] ^ C[18] ^ C[19] ^ C[20] ^ C[21] ^
 C[22] ^ C[23];
 NewCRC[1] = D[23] ^ D[18] ^ D[0] ^ C[10] ^ C[15];
 NewCRC[2] = D[24] ^ D[19] ^ D[1] ^ C[11] ^ C[16];
 NewCRC[3] = D[25] ^ D[20] ^ D[2] ^ C[12] ^ C[17];
 NewCRC[4] = D[26] ^ D[21] ^ D[3] ^ C[13] ^ C[18];
 NewCRC[5] = D[31] ^ D[30] ^ D[29] ^ D[28] ^ D[26] ^ D[25] ^ D[24] ^
 D[23] ^ D[22] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
 D[12] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^ D[6] ^
 D[5] ^ D[3] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[2] ^
 C[3] ^ C[4] ^ C[5] ^ C[6] ^ C[7] ^ C[8] ^ C[9] ^ C[14] ^
 C[15] ^ C[16] ^ C[17] ^ C[18] ^ C[20] ^ C[21] ^ C[22] ^
 C[23];

Application Note AN-1160

Rev. 0 | Page 7 of 8

 NewCRC[6] = D[28] ^ D[18] ^ D[5] ^ D[0] ^ C[10] ^ C[20];
 NewCRC[7] = D[29] ^ D[19] ^ D[6] ^ D[1] ^ C[11] ^ C[21];
 NewCRC[8] = D[30] ^ D[20] ^ D[7] ^ D[2] ^ C[12] ^ C[22];
 NewCRC[9] = D[31] ^ D[21] ^ D[8] ^ D[3] ^ C[0] ^ C[13] ^ C[23];
 NewCRC[10] = D[22] ^ D[9] ^ D[4] ^ C[1] ^ C[14];
 NewCRC[11] = D[23] ^ D[10] ^ D[5] ^ C[2] ^ C[15];
 NewCRC[12] = D[24] ^ D[11] ^ D[6] ^ C[3] ^ C[16];
 NewCRC[13] = D[25] ^ D[12] ^ D[7] ^ C[4] ^ C[17];
 NewCRC[14] = D[26] ^ D[13] ^ D[8] ^ C[0] ^ C[5] ^ C[18];
 NewCRC[15] = D[27] ^ D[14] ^ D[9] ^ C[1] ^ C[6] ^ C[19];
 NewCRC[16] = D[28] ^ D[15] ^ D[10] ^ C[2] ^ C[7] ^ C[20];
 NewCRC[17] = D[29] ^ D[16] ^ D[11] ^ C[3] ^ C[8] ^ C[21];
 NewCRC[18] = D[30] ^ D[17] ^ D[12] ^ C[4] ^ C[9] ^ C[22];
 NewCRC[19] = D[31] ^ D[18] ^ D[13] ^ C[5] ^ C[10] ^ C[23];
 NewCRC[20] = D[19] ^ D[14] ^ C[6] ^ C[11];
 NewCRC[21] = D[20] ^ D[15] ^ C[7] ^ C[12];
 NewCRC[22] = D[21] ^ D[16] ^ C[8] ^ C[13];
 NewCRC[23] = D[31] ^ D[30] ^ D[29] ^ D[28] ^ D[27] ^ D[26] ^ D[25] ^
 D[24] ^ D[23] ^ D[22] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
 D[12] ^ D[11] ^ D[10] ^ D[9] ^ D[8] ^ D[7] ^ D[6] ^
 D[5] ^ D[4] ^ D[3] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^
 C[2] ^ C[3] ^ C[4] ^ C[5] ^ C[6] ^ C[7] ^ C[8] ^ C[14] ^
 C[15] ^ C[16] ^ C[17] ^ C[18] ^ C[19] ^ C[20] ^ C[21] ^
 C[22] ^ C[23];

 ulCRC24_D32 = 0;
 // LFSR value from binary to hex.
 bit_mask = 0x000001;
 for (f = 0; f <= 23; f++)
 {
 ulCRC24_D32 = ulCRC24_D32 + NewCRC[f] * bit_mask;
 bit_mask = bit_mask << 1;
 }
 return(ulCRC24_D32 & 0x00FFFFFF);
}

AN-1160 Application Note

Rev. 0 | Page 8 of 8

NOTES

©2012 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN10885-0-9/12(0)

	Introduction
	Revision History
	Running the MicroConverter Loader
	The Physical Interface
	Defining the Data Transport Packet Format
	Packet Start ID Field
	Number of Bytes Field
	Command Field (Data 1)
	Value Field (Data 2 to Data 5)
	Data Bytes Field (Data 6 to Data 255)
	Checksum Field
	Acknowledge of Command

	Commands
	Erase Command
	Write Command
	Verify Command
	Remote Reset Command

	Command Example
	LFSR Code Example

