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INTRODUCTION
This application note describes the hardware master and slave 
implementation of an I2C-compatible (inter-integrated circuit) 
interface using the Cortex-M3 based family of precision Analog 
Devices, Inc., microcontrollers (the ADuCxxx family). 

This application note also includes example code showing how 
a master and a slave can communicate with each other using the 
I2C interface. These examples are 

• Master transmit and receive 
• Slave transmit and receive 
• DMA transfers (transmit and receive) in slave mode 
• DMA transfers (transmit and receive) in master mode 

See the AN-1159 companion code zip file, available on 
http://www.analog.com for companion codes. 

The main features of the I2C bus are 

• Only two bus lines are required, a serial data line (SDA) 
and a serial clock line (SCL). Both of these lines are 
bidirectional, meaning that both the master and the slave 
can operate as transmitters or as receivers. 

• An I2C master can communicate with multiple slave 
devices. Because each slave device has a unique address, 
single master/slave relationships can exist at all times even 
in a multi-slave environment.  

• Arbitration features allow multiple masters on the same  
I2C bus. 

• The master and slave can transmit and receive at up to 
400 kbps. 

• On-chip filtering rejects <50 ns spikes on the SDA and the 
SCL lines to preserve data integrity. 

Figure 1 shows typical I2C connections for multiple devices. 
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Figure 1. Single Master Multi-Slave I2C Block Diagram  
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I2C FUNDAMENTALS 
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Figure 2. Typical I2C Transfer Sequence 

 

I2C Interface Overview 

I2C is a 2-wire serial communication system originally 
developed by Philips Semiconductors (now NXP 
Semiconductors) that allows multiple masters and multiple 
slaves to be connected via two wires (SCL and SDA). In an  
I2C interface, there must be at least a single master and a  
single slave. 

The SCL signal controls the data transfer between master  
and slave. One clock pulse must be generated for each data  
bit transferred. The SCL signal is always transmitted from  
the master to the slave. The slave, however, does have the  
ability to pull this line low if it is not ready for the next 
transmission to begin. This is called clock stretching. 

The SDA signal is used to transmit or receive data. The SDA 
input must be stable during the high period of SCL. A transition 
of the SDA line while SCL is high is seen as a start or stop 
condition. A typical transfer sequence is shown in Figure 2. 

Start Condition 

A typical data transfer sequence for an I2C interface starts with 
the start condition. The start condition is simply a high to low 
transition in the SDA line while the SCL line is pulled high  
(see Figure 3). The master is always responsible for generating 
the start condition. The start (and stop) conditions are the only 
times that the SDA line should change during a high period of 
the SCL line. During normal data transfer (including slave 
addressing), the data on the SDA line must be stable during the 
high period of the SCL line. 
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Figure 3. Start Condition for I2C 

Stop Condition 

The data transfer sequence is terminated by the stop condition. 
A stop condition is defined by a low-to-high transition on the 
SDA line while SCL is high (see Figure 4). 
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Figure 4. Stop Condition for I2C 

The stop condition is always generated by the master. The 
master sends the stop condition once the master is satisfied  
that the data sequence is over or if it receives a NACK from the 
slave device. The reception of the stop condition resets the slave 
device into waiting for the slave address again. 

The I2C interface can be configured to generate an interrupt on 
the stop condition. 

Slave Address 

After the start condition, the master sends a byte, most 
significant bit (MSB) first, on the SDA line, along with eight 
SCL pulses. The first seven bits of this byte is the 7-bit slave 
address. The slave only responds to the master if this 7-bit 
address matches the address of the slave device (or one of the 
four slave addresses). The eighth bit, the least significant bit 
(LSB), is the R/W status bit. The R/W status bit determines the 
direction of the message. If this bit is low, the master writes data 
to a selected slave. If this bit is set, the master expects to receive 
data from the slave. The master generates the clock in both cases. 

If the slave receives the correct address, that is, the seven  
MSBs from the master match the seven MSBs of the I2CADR0 
memory mapped register (MMR), the slave returns a valid 
ACK, pulls the SCL line low, and sets flags in the I2CSSTA.  
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While the slave does all the manipulation of the I2C slave 
addressing automatically in hardware, it is up to the master  
to output the slave address appropriately. 

Acknowledge (ACK)/No Acknowledge (NACK) 

If the slave address matches the address sent by the master, the 
slave automatically sends an acknowledge (ACK). Otherwise, it 
sends a no acknowledge (NACK). An ACK is seen as a low level 
on the SDA line on the ninth clock pulse. A NACK is seen as a 
high level on the SDA line on the ninth clock pulse (see Figure 5).  

During data transfer, the ACK or the NACK is always generated 
by the receiver. Note, however, that the clock pulse required  
for the ACK is always generated by the master. The transmitter 
must release the SDA line (high) during the ACK clock pulse. 
For a valid ACK, the receiver must pull the SDA line low. 

Both the ACK and the NACK are automatically generated in 
hardware, at the end of each byte in the reception. 

If a master receives a NACK from a slave-receiver (either the 
slave did not respond to the slave address or the data trans-
mitted), the master should generate the stop condition to abort 
the transfer (see the Data Transfer section).  

A master receiver must signal the end of a data sequence to the 
slave-transmitter by generating a no acknowledge (NACK) after 
the last byte that was sent by the slave. Once the slave receives 

the NACK, it releases the SDA line to allow the master to 
generate the stop condition. 

The slave can also be configured to force a NACK. 

Data Transfer 

In the I2C interrupt service routine (ISR), or in a polled 
implementation, the slave decides whether to transmit or 
receive depending on the status of the R/W bit sent by the 
master. The slave then either transmits or receives a bit on  
each clock sent by the master. It is up to the master to provide 
the nine clocks (eight for the data and one for the ACK) for  
the slave to transmit/receive data to/from the master. The I2C 
interrupt bit is set every time a valid data byte is transmitted  
or received by the slave.  

Note again that in a slave-transmitter, master-receiver system 
the master must signal the end of a data sequence to the slave  
by sending a NACK after the last byte transmitted by the slave. 
Once the slave receives the NACK, it releases the SDA line to 
allow the master to generate the stop condition. 

If a master wants to abort a data transfer or to interrupt the data 
transfer of another master on the bus, it can do this by sending 
a start condition followed by a stop condition.  
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Figure 5. Acknowledge (ACK) and No Acknowledge (NACK) on the I2C Bus  
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Repeated Start Condition 

A repeated start condition occurs when a second start condition 
is sent to a slave without a stop condition being sent in between. 
This allows the master to reverse the direction of the transfer, by 
changing the R/W bit without having to give up control of the bus. 

An example of a transfer sequence is shown in Figure 6. This  
is generally used where the first data sent to the part sets up the 
register address to be read from. An interrupt is generated  
when a “repeated start + slave address” is received. This can be 
differentiated from a “start + slave address” by using the status 
bits in the I2CxSSTA MMR. 

The ADuCxxx family can directly generate an I2C repeated start 
sequence when in master mode using the sequence shown in 
Figure 6.  

Clock Stretching 

In an I2C communication, the master device determines the 
clock speed. Unlike RS-232, the I2C bus provides an explicit 
clock signal that relieves master and slave from synchronizing 
exactly to a predefined baud rate.  

However, there are situations where an I2C slave is not able to 
cooperate with the clock speed given by the master and needs  
to slow down a little. This is done by a mechanism referred to  
as clock stretching. 

An I2C slave is allowed to hold down the clock if it needs to 
reduce the bus speed. The master, on the other hand, is required 
to read back the clock signal after releasing it to a high state and 
wait until the line has actually gone high. 
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Figure 6. I2C Repeated Start Sequence 

 

I2cFifoFlush(MASTER, ENABLE); 

I2cFifoFlush(MASTER, DISABLE); 

NVIC_DisableIRQ(I2CM_IRQn); 

I2cMWrCfg(0xA0); // configure to send slave address 

I2cTx(MASTER, ucStartAddress);  // send slave address 

while ((I2cSta(MASTER)& I2CMSTA_TXFSTA_EMPTY) != I2CMSTA_TXFSTA_EMPTY){} {} 

// wait for the Tx FIFO to empty 

I2cMRdCfg(0xA0, ucLength , DISABLE);  

// sends out the read condition, this function sets the read bit 

NVIC_EnableIRQ(I2CM_IRQn); 
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TYPICAL I2C TIMING DIAGRAMS 
Table 1 and Table 2 give the typical timing on the I2C bus implemented on the Cortex-M3–based precision analog microconverters. The 
capacitive load for each of the I2C-bus line, Cb, is 400 pF maximum as per I2C-bus specifications.  

Note that the internal pull up on SCL and SDA should be disabled in software.  

Table 1. I2C Timing in Fast Mode (400 kHz) 
Parameter Description Min Max Unit 
tL Clock low pulse width 1300  ns 
tH Clock high pulse width 600  ns 
tSHD Start condition hold time 600  ns 
tDSU Data setup time 100  ns 
tDHD Data hold time 0  ns 
tRSU Setup time for repeated start 600  ns 
tPSU Stop condition setup time 600  ns 
tBUF Bus-free time between a stop condition and a start condition 1.3  µs 
tR Rise time for both clock and data 20 + 0.1 Cb 300 ns 
tF Fall time for both clock and data 20 + 0.1 Cb 300 ns 
tSUP Pulse width of spike suppressed 0 50 ns 

Table 2. I2C Timing in Standard Mode (100 kHz) 
Parameter Description Min Max Unit 
tL Clock low pulse width 4.7  µs 
tH Clock high pulse width 4.0  µs 
tSHD Start condition hold time 4.7  µs 
tDSU Data setup time 250  ns 
tDHD Data hold time 0  µs 
tRSU Setup time for repeated start 4.0  µs 
tPSU Stop condition setup time 4.0  µs 
tBUF Bus-free time between a stop condition and a start condition 4.7  µs 
tR Rise time for both clock and data  1 µs 
tF Fall time for both clock and data  300 ns 
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Figure 7. I2C Compatible Interface Timing 
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I2C IMPLEMENTATION ON THE CORTEX-M3–BASED 
MICROCONVERTER 
The Cortex-M3–based ADuCxxx family contains full hardware 
master and slave I2C ports. 

The I2C peripheral interface consists of 19 registers in total,  
9 for the master, 9 for the slave and one shared between master 
and slave. These are summarised in Table 3. 

Table 3. I2C Registers 
Registers Master  Slave  Shared 
Receive  I2CMRX I2CSRX I2CFSTA 
Transmit  I2CMTX I2CSTX I2CFSTA 
Status  I2CMSTA I2CSSTA  
Control I2CMCON I2CSCON  
Address/ID I2CADR0/ 

I2CADR1 
I2CID0/I2CID1/ 
I2CID2/I2CID3 

 

Clock I2CDIV   
Other  I2CMRXCNT 

I2XMCRXCNT 
I2CALT  

All registers and bits are described in the device user guide.  

Some specific features are explained in more details in this 
application note.  

Configuring the Communication Speed 

The I2CDIV is a 16-bit register containing two 8-bit values, 
HIGH and LOW. The value in this register sets up the speed  
of the I2C bus. This is set up according to the formula: 

fI2CSCL = fPERIPH/(LOW + HIGH + 3) 

where: 
fPERIPH = is the I2C peripheral clock. 
HIGH = I2CDIV[15:8]. The high period of the I2C bus clock is 
determined by (HIGH + 2) ÷ I2C peripheral clock. 
LOW = I2CDIV[7:0]. The low period of the I2C bus clock. is 
determined by (LOW + 1) ÷ I2C peripheral clock. 

Thus, for 100 kHz operation, with an I2C peripheral clock of 16 
MHz, LOW = 0x4F, and HIGH = 0x4E and for 400 kHz, LOW 
= 0x13, and HIGH = 0x12. 

ADuCM360 Specific 

On the ADuCM360, the I2C peripheral clock is  

fPERIPH = fUCLK ÷ (CLKSYSDIV × I2CCLK) 

where: 
UCLK is the system clock, 16 MHz. 
CLKSYSDIV is 1 or 2, depending on the CLKSYSDIV[0] bit 
setting. 
I2CCD is the clock divide value and is set by the 
CLKCON1[8:6] bits to value between 1 and 7. 

The I2C peripheral clock is disabled by default and should be 
first enabled in CLKDIS[2]. This is for optimizing power 
consumption on the part. For more details, see the AN-1111 
Application Note, Options for Minimizing Power Consumption 
When Using the ADuCM360/ADuCM361. 

The following flowcharts assume that the I2C peripheral clock is 
enabled and configured. 

Use of the FIFO 

The I2C hardware interface includes four 2-byte FIFOs per I2C 
function. 

• Master receive 
• Master transmit 
• Slave receive 
• Slave transmit  

Each of them also includes a shift register holding the 
remaining bit of a byte to receive/transmit. 

Transmit FIFO 

To transmit data, the I2CSTX/I2CMTX registers must be 
loaded.  
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Figure 8. Transmit FIFO 

Writing a byte to the Tx register is equivalent to writing to  
Byte 1 of the FIFO (see Figure 8). 

• If Byte 0 is empty, the byte in Byte 1 gets pushed to Byte 0 
automatically. This is transparent to the user. I2CFSTA 
register indicates when one byte is present in the FIFO. 

• If Byte 0 is already full, the byte stays in Byte 1. Writing in 
Tx again overwrites Byte 1. 

The transition of Byte0 to the shift register (OUT) is also 
transparent to the user but requires a valid communication on 
the slave side. 
The FIFO set the TXREQ bit (I2CMSTA[2]/I2CSSTA[2]) when 
it is not full. These bits can generate interrupts if enabled. 

Setting the transmit FIFO flush bit(s) in the I2CFSTA register 
empties the FIFO(s). 

Receive FIFO 

When receiving data, the data arrives in Byte 0. 

• If Byte 1 is empty, Byte 0 is shifted automatically to Byte 1.  
• If Byte 1 is already full, Byte 0 stays until I2CSRX is read 

(equivalent to reading Byte 1). 
• If other data arrive while the FIFO is full, the slave delivers 

a NACK for the data and I2CSSTA[4] is set. (or I2CMSTA[9] 
for the master) 

The FIFO set the RXREQ bit (I2CMSTA[3]/I2CSSTA[3]) when 
it is not empty. These bits can generate interrupts if enabled. 

 

http://www.analog.com/aducm360
http://www.analog.com/AN-1111
http://www.analog.com/AN-1111
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Figure 9. Receive FIFO 

Use of the DMA Channels 

Four channels in the DMA controller are allocated to the I2C 
interface: 

• Master receive 
• Master transmit 
• Slave receive 
• Slave transmit 

When transmitting, the I2C peripheral generates a DMA request 
when there is space in the transmit FIFO and when receiving, 
when there is a byte in the receive FIFO. 

The DMA transfer ends, and generates an interrupt, when all 
bytes from memory have moved to the transmit FIFO or when 
the memory allocated to the DMA channel is full.  

The I2C status bits TXREQ and RXREQ do not generate 
interrupts when set in DMA mode; however, the TCOMP bit 
indicating the end of the transaction can still generate an 
interrupt and be used in DMA mode. 

I2C LOW LEVEL FUNCTIONS 

To simplify code development, a set of low level functions are 
provided in I2cLib. These functions are listed in Table 4. They 
are described in detail in the documentation folder of the 
CD/DVD. 

The flowcharts for each scenario are based on these low level 
functions. 

 

Table 4. I2C Low Level Functions 
Master Configuraton 
int I2cMCfg(int iDMACfg, int iIntSources, int iConfig); Configure I2C master 
int I2cBaud(int iHighPeriod, int iLowPeriod); Configures I2C baud rate 
int I2cMWrCfg(unsigned int uiDevAddr); Configures slave address 
int I2cMRdCfg(unsigned int uiDevAddr, int iNumBytes, int iExt); Configures slave address, number of bytes to read 
int I2cMRdCnt(void); Read the counter of bytes received by the master 

Slave Configuration 
int I2cSCfg(int iDMACfg, int iIntSources, int iConfig); Configures I2C slave 
int I2cSIDCfg(int iSlaveID0, int iSlaveID1, int iSlaveID2, int iSlaveID3); Configure the slave addresses 
int I2cSGCallCfg(int iHWGCallAddr); Setup the hardware general call 

Common Functions 
int I2cRx(int iMode); Reads the Rx register of the slave or master 
int I2cTx(int iMode, int iTx); Writes in the Tx register of the slave or master 
int I2cStr(int iMode, int iStretch); Configures clock stretching 
int I2cFifoFlush(int iMode, int iFlush); Flush slave or master Tx FIFO 
int I2cSta(int iMode); Reads the status of the slave or master 
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MASTER TRANSMIT 
In order to transmit a byte, the data must first be loaded into 
the transmit FIFO. The address of the slave must be specified  
in the I2CADR0 register. For a write of data, the write (W)  
bit in the address register must be set to zero. Writing to the 
I2CADR0 register automatically generates a start condition. 

An I2C interrupt is generated on the first clock of a byte 
transmitted, when the transmit FIFO is empty or not full, and 
Bit 2 in I2CMSTA is set, indicating that the master has just 
transmitted a byte. This allows the user to add a byte to the 
FIFO. The status of the FIFO can be check in I2CMSTA[1:0]  
or the I2CFSTA register. 

If only one byte is in the FIFO when initiating the transfer,  
the first I2C interrupt occurs on the first clock of the address 
transmitted. If two bytes are in the FIFO, then the interrupt  
is generated on the first clock of the first byte transmitted. 

If the transmit FIFO is not kept full, the transmit interrupt is 
generated on each clock edges. The TXUR bit is then set after 
the last bit of the last byte has been transmitted. If no data is 

placed in the FIFO within ½ clock cycle of the TXUR being  
set, that is, during the slave acknowledge bit, the master 
automatically ends the transmission. 

The stop condition is automatically generated 5.1 µs after the 
last byte is transmitted. 

The TXREQ interrupt enable bit in the I2CMCON MMR 
(I2CMCON[5]) needs to be cleared or the transmit interrupt 
will be generated continuously until the STOP condition is 
generated.  

The TCOMP bit also generates an interrupt if enabled 
(I2CMCON[8]), when the stop condition is generated. This 
allows to safely turning off the I2C peripheral, for example 
before entering low power mode. 

An example of the master responding to a request for data from 
the slave is shown in Figure 10. 

 

 

//ENABLE I2C on GPIO
DioCfg(pADI_GPx,0xXXXX);
DioPul(pADI_GPx,0xXX);

//COPY MASTER STATUS REGISTER
uiStatus = I2cSta(MASTER);

//DISABLE TX INTERRUPT
I2cMCfg(0,I2CMCON_IENTX_DIS,I2CMCON_MAS);

//RETURN FROM HANDLER

//SET UP I2C MASTER MODE, 100kHz
I2cMCfg(0,I2CMCON_IENTX,I2CMCON_MAS);
I2cBaud(0xXX,0xXX);

//CHECK FOR TX INTERRUPT
if((uiStatus & I2CMSTA_TXREQ) == I2CMSTA_TXREQ)

//PLACE DATA IN TX FIFO
I2cTx(MASTER,0xXX);

//ENABLE MASTER I2C INTERRUPT
NVIC_EnableIRQ(I2CM_IRQn);

//PLACE FIRST TWO BYTES IN TX FIFO
I2cTx(MASTER,0xXX);

//SET UP DEVICE ADDRESS
I2cMWrCfg(0xA0);

MORE
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Figure 10. Master Transmit Flowchart
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SLAVE RECEIVE 
As the data is received by an I2C slave, an interrupt is generated 
after the eighth clock of each byte is received. If the FIFO is not 
read before a third byte is received, RXOF, I2CSSTA[4] is set, 
indicating a receive FIFO overflow. The FIFO can be read at this 
time. If the FIFO is not read before the rising edge of the ninth 
clock, the slave interface automatically delivers a NACK. 

To read data from the FIFO, the I2CRX register is used. 
RXREQ, I2CSSTA[3] indicates that the slave has received data. 

Only reading I2CSRX clears this bit. The I2C interrupt is 
generated continuously if enabled and RXREQ is set. 

The master automatically sends a stop condition after sending 
the last data. The slave detects a STOP condition sets 
I2CSSTA[10]. This bit can generate an interrupt if IENSTOP, 
I2CSCON[8] is set. 

A flowchart of the slave receiving bytes from the master is 
shown in Figure 11. Figure 12 shows when the status bits are  
set and when the interrupts occur. 

 

//ENABLE I2C on GPIO
DioCfg(pADI_GPx,0xXXXX);
DioPul(pADI_GPx,0xXX);

//RETURN FROM HANDLER

//COPY SLAVE STATUS REGISTER
uiStatus = I2cSta(SLAVE);

//SET UP I2C SLAVE MODE
I2cSCfg(0,I2CSCON_IENRX,I2CSCON_SLV);
I2cSIDCfg(0xA0,0,0,0);

//WAIT FOR MASTER

//CHECK FOR RX INTERRUPT
if((uiStatus&I2CSSTA_RXREQ)==I2CSSTA_RXREQ)

//READ DATA FROM FIFO
ucDat[i] = I2cRx(SLAVE);

//ENABLE SLAVE I2C INTERRUPT
NVIC_EnableIRQ(I2CS_IRQn);

I2C SLAVE INITIALIZATION I2C SLAVE INTERRUPT HANDLER
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Figure 11. Slave Receive Flowchart 
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MASTER RECEIVE 
In master mode, to read data from a slave, a similar approach is 
used. First, the number of bytes to be read is configured by the 
I2CMRXCNT register. This denotes the number of bytes to be 
read from the slave, plus one. This is a 8-bit register so 256 bytes 
can be received at once. An EXTEND option is also available for 
larger transfer. The I2CMCRXCNT reflects the current number 
of bytes received by the master. 

In order to start receiving data, the read (R) bit is set in the 
I2CADR0 register. This initiates a transfer with a start condition 
generated with the address and a R/W bit set by the I2CADR0 
register. After each byte is received (after the ninth clock, ACK 
or NACK), an interrupt is generated. RXREQ, I2CMSTA[3] is 

set, indicating that a byte has just been received. Only reading 
I2CMRX clears this bit. 

When the master does not need to receive more data, it auto-
matically generates a NACK to the last byte received. This tells 
the slave to cease transmitting bytes and allows the master to 
then generate a stop condition. 

If the data received is not read on time and the FIFO is full, the 
master delivers a NACK for the extra data received. 

A flowchart of the master receiving bytes from the slave is 
shown in Figure 13. 

 
 

//ENABLE I2C on GPIOs
DioCfg(pADI_GPx,0xXXXX);
DioPul(pADI_GPx,0xXX);

//COPY MASTER STATUS REGISTER
uiStatus = I2cSta(MASTER);

//SET UP I2C MASTER MODE, 100kHz
I2cMCfg(0,I2CMCON_IENRX,I2CMCON_MAS);
I2cBaud(0x4E,0x4F);

//CHECK FOR RX INTERRUPT
if((uiStatus & I2CMSTA_RXREQ)
==I2CMSTA_RXREQ)

//READ DATA FROM FIFO
dat[i] = I2cRx(MASTER);

//ENABLE MASTER I2C INTERRUPT
NVIC_EnableIRQ(I2CM_IRQn);

//SET UP SLAVE ADDRESS and
NUMBER OF BYTES TO BE RECEIVED
I2cMRdCfg(0xA0,nbByte,DISABLE);

//RETURN FROM HANDLER

//WAIT FOR FIRST BYTE TO BE RECEIVED

I2C MASTER INITIALIZATION I2C MASTER INTERRUPT HANDLER
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Figure 13. Master Receive Flowchart 
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SLAVE TRANSMIT 
The slave generates an interrupt on each request for data to be 
transmitted, the first occurring after the ACK of the address, 
that is, while Byte 0 of the FIFO is sent. Data needs to be 
preloaded into the slave transmit FIFO, otherwise the first read 
request from the master results in a NACK being generated.  
If the FIFO is preloaded with two sets of data, one interrupt 
occurs after the ACK of the address and then after the ACK  
of each byte sent. If the FIFO is preloaded with one set of data 
only, two interrupts occur after the ACK of the address, the 
FIFO emptying after sending the first data. 

Once a byte has been transmitted, an interrupt is generated as 
long as the master continues to request data.  

TXREQ, I2CSSTA[2] is set when there is space in the transmit 
FIFO, or each time a byte is transmitted to the master. The 
transmit interrupt can be disabled when there is no more data 
to transmit and can be re-enabled when detecting the STOP 
condition (I2CSSTA[10]). The STOP detection can generate an 
interrupt if IENSTOP, I2CSCON[8] is set. 

An example of the slave responding to a request for data from 
the master is shown in Figure 14. Figure 15 shows when the 
status bits are set and when the interrupts occur. 

 

 

//ENABLE I2C on GPIOs
DioCfg(pADI_GPx,0xXXX);
DioPul(pADI_GPx,0xXX);

//SET UP I2C MASTER MODE
I2cSCfg(0,I2CSCON_IENTX|
  I2CSCON_STOP,I2CSCON_SLV);
I2cSIDCfg(0xA0,0,0,0);

//ENABLE SLAVE I2C INTERRUPT
NVIC_EnableIRQ(I2CS_IRQn);

//PLACE 1 OR 2 BYTES IN TX FIFO
I2cTx(SLAVE,0xXX);

//WAIT FOR MASTER

//PLACE DATA IN TX FIFO
I2cTx(SLAVE,0xXX);MORE

DATA? Y

N

I2C SLAVE INITIALIZATION

//COPY SLAVE STATUS REGISTER
uiStatus = I2cSta(SLAVE);

//CHECK FOR STOP INTERRUPT
if((uiStatus & I2CSSTA_STOP)
==I2CSSTA_STOP)

//ENABLE TX INTERRUPT
I2cSCfg(0,I2CSCON_IENTX,
I2CSCON_SLV);

//PLACE 1 OR 2 BYTES IN TX FIFO
I2cTx(SLAVE,0xXX);

//RETURN FROM HANDLER

//CHECK FOR TX INTERRUPT
if((uiStatus & I2CSSTA_TXREQ
==I2CSSTA_TXREQ)

//DISABLE TX INTERRUPT
I2cSCfg(0,I2CSCON_IENTX_DIS,
I2CSCON_SLV);

I2C SLAVE INTERRUPT HANDLER
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Figure 14. Slave Transmit Flowchart 
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Figure 15. Example of a Slave Transmit  
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DMA MODE, MASTER TRANSMIT 
I2C transfers are initiated with the transmission by the master  
of the slave address. When DMA transmit mode is configured, 
by setting TXDMA in the I2CMCON MMR, the transfer starts 
when the I2C peripheral is fully configured, that is, baud rate, 
slave address, and DMA transmit request, and when the DMA 
controller is configured and enabled. The I2C master transmit 
DMA channel should also be enabled in the NVIC at any time 
before starting the transfer. 

The DMA transfer is complete when all bytes have been 
transferred from memory into the FIFO; this means while the 
last two bytes are stored in the FIFO and the third last byte is 

being transmitted as shown in Figure 17. The DMA channel is 
then disabled automatically in the DMA controller. However, 
the I2C peripheral sends a DMA request to the DMA controller 
when the FIFO is not full and generates an interrupt. Therefore, 
the I2C requests should be masked in the DMA controller to 
avoid multiple interrupts (DMARMSKSET). 

The DMA controller needs to be reconfigured/re-enabled to 
start a new transfer.  

Figure 16 shows a flowchart of I2C master transmit DMA 
transfer.  

 

//ENABLE I2C on GPIO
DioPul(pADI_GPx,0xXX);
DioCfg(pADI_GPx,0xXXXX);

//SET UP DMA DESCRIPTIORS 6
pADI_DMA->DMAPDBPTR = (unsignedint)&dmaChanDesc;

//SET UP I2C MASTER IN TRANSMIT MODE FOR DMA TRANSFER
I2cMCfg(I2CMCON_TXDMA,0,
I2CMCON_MAS);I2cBaud(0x4E,0x4F);
I2cMWrCfg(0xA0);

//ENABLE SLAVE I2C DMA INTERRUPT
NVIC_EnableIRQ(DMA_I2CM_TX_IRQn);

//WAIT FOR COMPLETION OF TRANSFER

//CONFIGURE DMA CONTROLLER
pADI_DMA->DMAENSET = DMAENSET_I2CMTX;
pADI_DMA->DMACFG = DMACFG_ENABLE_EN;

//INITIATE NEW TRANSFER
pADI_DMA->DMARMSKCLR| = DMARMSKCLR_I2CMTX;
I2cMWrCfg(0xA0);

I2C MASTER INITIALIZATION

//MASK I2C MASTER DMA TRANSMIT REQUEST
pADI_DMA->DMARMSKSET| = DMARMSKSET_I2CMTX;

//REFRESH DMA DESCRIPTOR 6
I2CMTxDmaDesc->ctrlCfg.n_minus_1 = DMA_TX_COUNT-1;
I2CMTxDmaDesc->ctrlCfg.cycle_ctrl = 1;

//ENABLE DMA CHANNEL FOR NEXT TRANSFER
pADI_DMA->DMAENSET| = DMAENSET_I2CMTX;

//RETURN FROM HANDLER

I2C MASTER TRANSMIT DMA INTERRUPT HANDLER

10
88

2-
01

6

 
Figure 16. Master Transmit DMA Transfer Flowchart 
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Figure 17. Master Transmit DMA Interrupt 
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DMA MODE, MASTER RECEIVE 
DMA transfers are enabled in the I2C peripheral by setting 
RXDMA in the I2CMCON MMR. The transfer starts when  
the DMA controller is configured and enabled and when I2C 
peripheral is fully configured, that is, baud rate, slave address, 
and DMA transmit request. The I2C master transmit DMA 
channel should also be enabled in the NVIC at any time before 
starting the transfer. 

The DMA transfer is complete when all bytes expected by  
the DMA controller have been received. The I2C master 

I2CMRXCNT MMR should be also configured with the same 
number of bytes. 

When the DMA transfer is complete, the corresponding 
channel is disabled automatically in the DMA controller. The 
DMA controller needs to be reconfigured and re-enabled to 
start a new transfer. Initiation of a new transfer is done by 
writing the slave address again in the I2CADR0 MMR.  

Figure 18 shows a flowchart of DMA transfer with the master 
receiving data from the slave. 

 

//ENABLE I2C on GPIO
DioCfg(pADI_GPx,0xXXXX);
DioPul(pADI_GPx,0xXX);

//SET UP DMA DESCRIPTIORS 7
pADI_DMA->DMAPDBPTR = (unsignedint)&dmaChanDesc;

//SET UP I2C MASTER IN RECEIVE MODE FOR DMA TRANSFER
I2cMCfg(I2CMCON_RXDMA,0,
I2CMCON_MAS);I2cBaud(0x4E,0x4F);
I2cMRdCfg(0xA0,DMA_RX_COUNT,0);

//ENABLE MASTER I2C DMA INTERRUPT
NVIC_EnableIRQ(DMA_I2CM_RX_IRQn);

//WAIT FOR COMPLETION OF TRANSFER

//CONFIGURE DMA CONTROLLER
pADI_DMA->DMAENSET = DMAENSET_I2CMRX;
pADI_DMA->DMACFG = DMACFG_ENABLE_EN;

//INITIATE NEW TRANSFER
I2cMRdCfg(0xA0,DMA_RX_COUNT,0);

I2C MASTER INITIALIZATION

//REFRESH DMA DESCRIPTOR 7
I2CMRxDmaDesc->ctrlCfg.n_minus_1 = DMA_RX_COUNT-1;
I2CMRxDmaDesc->ctrlCfg.cycle_ctrl = 1;

//ENABLE DMA CHANNEL FOR NEXT TRANSFER
pADI_DMA->DMAENSET| = DMAENSET_I2CMRX;

//RETURN FROM HANDLER

I2C MASTER RECEIVE DMA INTERRUPT HANDLER
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Figure 18. Master Receive DMA Transfer Flowchart 
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DMA MODE, SLAVE RECEIVE AND TRANSMIT 
DMA transfers are enabled in the I2C peripheral by setting 
TXDMA and/or RXDMA in the I2CSCON MMR. The I2C 
peripheral should be configured in slave mode and the I2C 
interrupt disabled. NVIC and DMA controller need to be 
configured. The DMA transfer is initiated by reception of the 
correct I2C address. Only the data bytes are then transferred 
into memory. When the DMA transfer is complete, the 

corresponding channel is disabled automatically in the DMA 
controller. Only the DMA controller needs to be reconfigured 
to start a new transfer. Figure 19 shows a flowchart of DMA 
transfer with the slave transmitting and receiving. 

Note that the DMA transfer in transmit mode ends when the  
3rd to last byte is being transmitted, similar to master transmit. 

 

//ENABLE I2C on GPIO
DioCfg(pADI_GPx,0xXXXX);
DioPul(pADI_GPx,0xXX);

//SET UP DMA DESCRIPTIORS 4 AND 5
pADI_DMA->DMAPDBPTR = (unsignedint)&dmaChanDesc;

//SET UP I2C SLAVE MODE FOR DMA TRANSFER
I2cSCfg(I2CSCON_RXDMA|I2CSCON_TXDMA,0,I2CSCON_SLV);
I2cSIDCfg(0xA0,0,0,0);

//ENABLE SLAVE I2C DMA INTERRUPT
NVIC_EnableIRQ(I2CS_IRQn);

//WAIT FOR MASTER

//CONFIGURE DMA CONTROLLER
pADI_DMA->DMAENSET = DMAENSET_I2CSRX|DMAENSET_I2CSTX;
pADI_DMA->DMACFG = DMACFG_ENABLE_EN;

I2C SLAVE INITIALIZATION

//REFRESH DMA DESCRIPTOR 5
I2CSRxDmaDesc->ctrlCfg.n_minus_1 = DMA_RX_COUNT-1;
I2CSRxDm aDesc->ctrlCfg.cycle_ctrl = 1;

//ENABLE DMA CHANNEL FOR NEXT TRANSFER
pADI_DMA->DMAENSET| = DMAENSET_I2CSRX;

//RETURN FROM HANDLER

I2C SLAVE DMA INTERRUPT HANDLER(S)—
EXAMPLE OF RX DMA
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Figure 19. Slave DMA Transfer Flowchart 
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COMPANION CODES 
A list and description of companion codes provided is shown in Table 5. 

Table 5. Companion Codes 
Mode/Flowchart Code Example/Tools 
Master Transmit I2Cmaster.c 
Slave Receive I2Cslave.c 
Master Receive I2Cmaster.c 
Slave Transmit I2Cslave.c 
DMA Mode, Master Transmit I2CmasterDMA.c 
DMA Mode, Master Receive I2CmasterDMA.c 
DMA Mode, Slave Receive and Transmit I2CslaveDMA.c 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors). 
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