

AN-1159
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

I2C-Compatible Interface on Cortex-M3 Based Precision Analog Microcontroller

(ADuCxxx Family)
by Bridget Dowling

Rev. 0 | Page 1 of 16

INTRODUCTION
This application note describes the hardware master and slave
implementation of an I2C-compatible (inter-integrated circuit)
interface using the Cortex-M3 based family of precision Analog
Devices, Inc., microcontrollers (the ADuCxxx family).

This application note also includes example code showing how
a master and a slave can communicate with each other using the
I2C interface. These examples are

• Master transmit and receive
• Slave transmit and receive
• DMA transfers (transmit and receive) in slave mode
• DMA transfers (transmit and receive) in master mode

See the AN-1159 companion code zip file, available on
http://www.analog.com for companion codes.

The main features of the I2C bus are

• Only two bus lines are required, a serial data line (SDA)
and a serial clock line (SCL). Both of these lines are
bidirectional, meaning that both the master and the slave
can operate as transmitters or as receivers.

• An I2C master can communicate with multiple slave
devices. Because each slave device has a unique address,
single master/slave relationships can exist at all times even
in a multi-slave environment.

• Arbitration features allow multiple masters on the same
I2C bus.

• The master and slave can transmit and receive at up to
400 kbps.

• On-chip filtering rejects <50 ns spikes on the SDA and the
SCL lines to preserve data integrity.

Figure 1 shows typical I2C connections for multiple devices.

SCL

SDA SDA

SCL

3.3V

MASTER SLAVE 1

SLAVE 2
SDA

SCL

PULL-UP
RESISTOR

PULL-UP
RESISTOR

10
88

2-
00

1

Figure 1. Single Master Multi-Slave I2C Block Diagram

http://www.analog.com/AN-1159
http://www.analog.com/
www.analog.com

AN-1159 Application Note

Rev. 0 | Page 2 of 16

TABLE OF CONTENTS
Introduction .. 1
Revision History ... 2
I2C Fundamentals ... 3
Typical I2C Timing Diagrams ... 6

I2C Implementation on the Cortex-M3–Based
MicroConverter .. 7
I2C Low Level Functions .. 8
Master Transmit .. 9

Slave Receive ... 10
Master Receive .. 11
Slave Transmit ... 12
DMA Mode, Master Transmit .. 13
DMA Mode, Master Receive ... 14
DMA Mode, Slave Receive and Transmit 15
Companion Codes ... 16

REVISION HISTORY
9/12—Revision 0: Initial Version

Application Note AN-1159

Rev. 0 | Page 3 of 16

I2C FUNDAMENTALS

MSB

START
BIT

SCL

ACK
BIT

ACK
BIT

STOP
BIT

SLAVE ADDRESSSDA

MSBLSB LSB

DATA

1 17 8 89 92
3 TO 6 2 TO 7

R/W

10
88

2-
00

2

Figure 2. Typical I2C Transfer Sequence

I2C Interface Overview

I2C is a 2-wire serial communication system originally
developed by Philips Semiconductors (now NXP
Semiconductors) that allows multiple masters and multiple
slaves to be connected via two wires (SCL and SDA). In an
I2C interface, there must be at least a single master and a
single slave.

The SCL signal controls the data transfer between master
and slave. One clock pulse must be generated for each data
bit transferred. The SCL signal is always transmitted from
the master to the slave. The slave, however, does have the
ability to pull this line low if it is not ready for the next
transmission to begin. This is called clock stretching.

The SDA signal is used to transmit or receive data. The SDA
input must be stable during the high period of SCL. A transition
of the SDA line while SCL is high is seen as a start or stop
condition. A typical transfer sequence is shown in Figure 2.

Start Condition

A typical data transfer sequence for an I2C interface starts with
the start condition. The start condition is simply a high to low
transition in the SDA line while the SCL line is pulled high
(see Figure 3). The master is always responsible for generating
the start condition. The start (and stop) conditions are the only
times that the SDA line should change during a high period of
the SCL line. During normal data transfer (including slave
addressing), the data on the SDA line must be stable during the
high period of the SCL line.

SCL

SDA

START

10
88

2-
00

3

Figure 3. Start Condition for I2C

Stop Condition

The data transfer sequence is terminated by the stop condition.
A stop condition is defined by a low-to-high transition on the
SDA line while SCL is high (see Figure 4).

SCL

SDA

STOP

10
88

2-
00

4

Figure 4. Stop Condition for I2C

The stop condition is always generated by the master. The
master sends the stop condition once the master is satisfied
that the data sequence is over or if it receives a NACK from the
slave device. The reception of the stop condition resets the slave
device into waiting for the slave address again.

The I2C interface can be configured to generate an interrupt on
the stop condition.

Slave Address

After the start condition, the master sends a byte, most
significant bit (MSB) first, on the SDA line, along with eight
SCL pulses. The first seven bits of this byte is the 7-bit slave
address. The slave only responds to the master if this 7-bit
address matches the address of the slave device (or one of the
four slave addresses). The eighth bit, the least significant bit
(LSB), is the R/W status bit. The R/W status bit determines the
direction of the message. If this bit is low, the master writes data
to a selected slave. If this bit is set, the master expects to receive
data from the slave. The master generates the clock in both cases.

If the slave receives the correct address, that is, the seven
MSBs from the master match the seven MSBs of the I2CADR0
memory mapped register (MMR), the slave returns a valid
ACK, pulls the SCL line low, and sets flags in the I2CSSTA.

AN-1159 Application Note

Rev. 0 | Page 4 of 16

While the slave does all the manipulation of the I2C slave
addressing automatically in hardware, it is up to the master
to output the slave address appropriately.

Acknowledge (ACK)/No Acknowledge (NACK)

If the slave address matches the address sent by the master, the
slave automatically sends an acknowledge (ACK). Otherwise, it
sends a no acknowledge (NACK). An ACK is seen as a low level
on the SDA line on the ninth clock pulse. A NACK is seen as a
high level on the SDA line on the ninth clock pulse (see Figure 5).

During data transfer, the ACK or the NACK is always generated
by the receiver. Note, however, that the clock pulse required
for the ACK is always generated by the master. The transmitter
must release the SDA line (high) during the ACK clock pulse.
For a valid ACK, the receiver must pull the SDA line low.

Both the ACK and the NACK are automatically generated in
hardware, at the end of each byte in the reception.

If a master receives a NACK from a slave-receiver (either the
slave did not respond to the slave address or the data trans-
mitted), the master should generate the stop condition to abort
the transfer (see the Data Transfer section).

A master receiver must signal the end of a data sequence to the
slave-transmitter by generating a no acknowledge (NACK) after
the last byte that was sent by the slave. Once the slave receives

the NACK, it releases the SDA line to allow the master to
generate the stop condition.

The slave can also be configured to force a NACK.

Data Transfer

In the I2C interrupt service routine (ISR), or in a polled
implementation, the slave decides whether to transmit or
receive depending on the status of the R/W bit sent by the
master. The slave then either transmits or receives a bit on
each clock sent by the master. It is up to the master to provide
the nine clocks (eight for the data and one for the ACK) for
the slave to transmit/receive data to/from the master. The I2C
interrupt bit is set every time a valid data byte is transmitted
or received by the slave.

Note again that in a slave-transmitter, master-receiver system
the master must signal the end of a data sequence to the slave
by sending a NACK after the last byte transmitted by the slave.
Once the slave receives the NACK, it releases the SDA line to
allow the master to generate the stop condition.

If a master wants to abort a data transfer or to interrupt the data
transfer of another master on the bus, it can do this by sending
a start condition followed by a stop condition.

SDA FLOATS (HIGH) FOR NACK

RECEIVER PULLS SDA LOW FOR ACK

TRANSMITTER RELEASES SDA

CLOCK PULSE FOR ACKNOWLEDGE

7 8 9

DATA OUTPUT BY
RECEIVER

DATA OUTPUT BY
TRANSMITTER DATA LSB

MASTER CLOCK

10
88

2-
00

5

Figure 5. Acknowledge (ACK) and No Acknowledge (NACK) on the I2C Bus

Application Note AN-1159

Rev. 0 | Page 5 of 16

Repeated Start Condition

A repeated start condition occurs when a second start condition
is sent to a slave without a stop condition being sent in between.
This allows the master to reverse the direction of the transfer, by
changing the R/W bit without having to give up control of the bus.

An example of a transfer sequence is shown in Figure 6. This
is generally used where the first data sent to the part sets up the
register address to be read from. An interrupt is generated
when a “repeated start + slave address” is received. This can be
differentiated from a “start + slave address” by using the status
bits in the I2CxSSTA MMR.

The ADuCxxx family can directly generate an I2C repeated start
sequence when in master mode using the sequence shown in
Figure 6.

Clock Stretching

In an I2C communication, the master device determines the
clock speed. Unlike RS-232, the I2C bus provides an explicit
clock signal that relieves master and slave from synchronizing
exactly to a predefined baud rate.

However, there are situations where an I2C slave is not able to
cooperate with the clock speed given by the master and needs
to slow down a little. This is done by a mechanism referred to
as clock stretching.

An I2C slave is allowed to hold down the clock if it needs to
reduce the bus speed. The master, on the other hand, is required
to read back the clock signal after releasing it to a high state and
wait until the line has actually gone high.

MSB

START
BIT

SCL

ACK
BIT

ACK
BIT

SLAVE ADDRESS
SDA

MSBLSB LSB

DATA

1 17 8 89 92
3 TO 6 2 TO 7

R/W

MSB

START
BIT

ACK
BIT

ACK
BIT

STOP
BIT

SLAVE ADDRESS

MSBLSB LSB

DATA

1 17 8 89 92
3 TO 6 2 TO 7

R/W

10
88

2-
00

6

Figure 6. I2C Repeated Start Sequence

I2cFifoFlush(MASTER, ENABLE);

I2cFifoFlush(MASTER, DISABLE);

NVIC_DisableIRQ(I2CM_IRQn);

I2cMWrCfg(0xA0); // configure to send slave address

I2cTx(MASTER, ucStartAddress); // send slave address

while ((I2cSta(MASTER)& I2CMSTA_TXFSTA_EMPTY) != I2CMSTA_TXFSTA_EMPTY){} {}

// wait for the Tx FIFO to empty

I2cMRdCfg(0xA0, ucLength , DISABLE);

// sends out the read condition, this function sets the read bit

NVIC_EnableIRQ(I2CM_IRQn);

AN-1159 Application Note

Rev. 0 | Page 6 of 16

TYPICAL I2C TIMING DIAGRAMS
Table 1 and Table 2 give the typical timing on the I2C bus implemented on the Cortex-M3–based precision analog microconverters. The
capacitive load for each of the I2C-bus line, Cb, is 400 pF maximum as per I2C-bus specifications.

Note that the internal pull up on SCL and SDA should be disabled in software.

Table 1. I2C Timing in Fast Mode (400 kHz)
Parameter Description Min Max Unit
tL Clock low pulse width 1300 ns
tH Clock high pulse width 600 ns
tSHD Start condition hold time 600 ns
tDSU Data setup time 100 ns
tDHD Data hold time 0 ns
tRSU Setup time for repeated start 600 ns
tPSU Stop condition setup time 600 ns
tBUF Bus-free time between a stop condition and a start condition 1.3 µs
tR Rise time for both clock and data 20 + 0.1 Cb 300 ns
tF Fall time for both clock and data 20 + 0.1 Cb 300 ns
tSUP Pulse width of spike suppressed 0 50 ns

Table 2. I2C Timing in Standard Mode (100 kHz)
Parameter Description Min Max Unit
tL Clock low pulse width 4.7 µs
tH Clock high pulse width 4.0 µs
tSHD Start condition hold time 4.7 µs
tDSU Data setup time 250 ns
tDHD Data hold time 0 µs
tRSU Setup time for repeated start 4.0 µs
tPSU Stop condition setup time 4.0 µs
tBUF Bus-free time between a stop condition and a start condition 4.7 µs
tR Rise time for both clock and data 1 µs
tF Fall time for both clock and data 300 ns

MSB LSB ACK MSB

1982 TO
 7

1

P S S(R)

tR

tF

tRSU

tDSUtDSU

tPSU

tBUF

tH

tF

tR

tDHDtDHD

tSHD

tSUPtL

tSUP

STOP
CONDITION

START
CONDITION

REPEATED
START

SDA (I/O)

SCL (I)

10
88

2-
00

7

Figure 7. I2C Compatible Interface Timing

Application Note AN-1159

Rev. 0 | Page 7 of 16

I2C IMPLEMENTATION ON THE CORTEX-M3–BASED
MICROCONVERTER
The Cortex-M3–based ADuCxxx family contains full hardware
master and slave I2C ports.

The I2C peripheral interface consists of 19 registers in total,
9 for the master, 9 for the slave and one shared between master
and slave. These are summarised in Table 3.

Table 3. I2C Registers
Registers Master Slave Shared
Receive I2CMRX I2CSRX I2CFSTA
Transmit I2CMTX I2CSTX I2CFSTA
Status I2CMSTA I2CSSTA
Control I2CMCON I2CSCON
Address/ID I2CADR0/

I2CADR1
I2CID0/I2CID1/
I2CID2/I2CID3

Clock I2CDIV
Other I2CMRXCNT

I2XMCRXCNT
I2CALT

All registers and bits are described in the device user guide.

Some specific features are explained in more details in this
application note.

Configuring the Communication Speed

The I2CDIV is a 16-bit register containing two 8-bit values,
HIGH and LOW. The value in this register sets up the speed
of the I2C bus. This is set up according to the formula:

fI2CSCL = fPERIPH/(LOW + HIGH + 3)

where:
fPERIPH = is the I2C peripheral clock.
HIGH = I2CDIV[15:8]. The high period of the I2C bus clock is
determined by (HIGH + 2) ÷ I2C peripheral clock.
LOW = I2CDIV[7:0]. The low period of the I2C bus clock. is
determined by (LOW + 1) ÷ I2C peripheral clock.

Thus, for 100 kHz operation, with an I2C peripheral clock of 16
MHz, LOW = 0x4F, and HIGH = 0x4E and for 400 kHz, LOW
= 0x13, and HIGH = 0x12.

ADuCM360 Specific

On the ADuCM360, the I2C peripheral clock is

fPERIPH = fUCLK ÷ (CLKSYSDIV × I2CCLK)

where:
UCLK is the system clock, 16 MHz.
CLKSYSDIV is 1 or 2, depending on the CLKSYSDIV[0] bit
setting.
I2CCD is the clock divide value and is set by the
CLKCON1[8:6] bits to value between 1 and 7.

The I2C peripheral clock is disabled by default and should be
first enabled in CLKDIS[2]. This is for optimizing power
consumption on the part. For more details, see the AN-1111
Application Note, Options for Minimizing Power Consumption
When Using the ADuCM360/ADuCM361.

The following flowcharts assume that the I2C peripheral clock is
enabled and configured.

Use of the FIFO

The I2C hardware interface includes four 2-byte FIFOs per I2C
function.

• Master receive
• Master transmit
• Slave receive
• Slave transmit

Each of them also includes a shift register holding the
remaining bit of a byte to receive/transmit.

Transmit FIFO

To transmit data, the I2CSTX/I2CMTX registers must be
loaded.

OUT

I2CSTX

BYTE 1 BYTE 0

10
88

2-
00

8

Figure 8. Transmit FIFO

Writing a byte to the Tx register is equivalent to writing to
Byte 1 of the FIFO (see Figure 8).

• If Byte 0 is empty, the byte in Byte 1 gets pushed to Byte 0
automatically. This is transparent to the user. I2CFSTA
register indicates when one byte is present in the FIFO.

• If Byte 0 is already full, the byte stays in Byte 1. Writing in
Tx again overwrites Byte 1.

The transition of Byte0 to the shift register (OUT) is also
transparent to the user but requires a valid communication on
the slave side.
The FIFO set the TXREQ bit (I2CMSTA[2]/I2CSSTA[2]) when
it is not full. These bits can generate interrupts if enabled.

Setting the transmit FIFO flush bit(s) in the I2CFSTA register
empties the FIFO(s).

Receive FIFO

When receiving data, the data arrives in Byte 0.

• If Byte 1 is empty, Byte 0 is shifted automatically to Byte 1.
• If Byte 1 is already full, Byte 0 stays until I2CSRX is read

(equivalent to reading Byte 1).
• If other data arrive while the FIFO is full, the slave delivers

a NACK for the data and I2CSSTA[4] is set. (or I2CMSTA[9]
for the master)

The FIFO set the RXREQ bit (I2CMSTA[3]/I2CSSTA[3]) when
it is not empty. These bits can generate interrupts if enabled.

http://www.analog.com/aducm360
http://www.analog.com/AN-1111
http://www.analog.com/AN-1111

AN-1159 Application Note

Rev. 0 | Page 8 of 16

IN

I2CSRX

BYTE 1 BYTE 0

10
88

2-
00

9

Figure 9. Receive FIFO

Use of the DMA Channels

Four channels in the DMA controller are allocated to the I2C
interface:

• Master receive
• Master transmit
• Slave receive
• Slave transmit

When transmitting, the I2C peripheral generates a DMA request
when there is space in the transmit FIFO and when receiving,
when there is a byte in the receive FIFO.

The DMA transfer ends, and generates an interrupt, when all
bytes from memory have moved to the transmit FIFO or when
the memory allocated to the DMA channel is full.

The I2C status bits TXREQ and RXREQ do not generate
interrupts when set in DMA mode; however, the TCOMP bit
indicating the end of the transaction can still generate an
interrupt and be used in DMA mode.

I2C LOW LEVEL FUNCTIONS

To simplify code development, a set of low level functions are
provided in I2cLib. These functions are listed in Table 4. They
are described in detail in the documentation folder of the
CD/DVD.

The flowcharts for each scenario are based on these low level
functions.

Table 4. I2C Low Level Functions
Master Configuraton
int I2cMCfg(int iDMACfg, int iIntSources, int iConfig); Configure I2C master
int I2cBaud(int iHighPeriod, int iLowPeriod); Configures I2C baud rate
int I2cMWrCfg(unsigned int uiDevAddr); Configures slave address
int I2cMRdCfg(unsigned int uiDevAddr, int iNumBytes, int iExt); Configures slave address, number of bytes to read
int I2cMRdCnt(void); Read the counter of bytes received by the master

Slave Configuration
int I2cSCfg(int iDMACfg, int iIntSources, int iConfig); Configures I2C slave
int I2cSIDCfg(int iSlaveID0, int iSlaveID1, int iSlaveID2, int iSlaveID3); Configure the slave addresses
int I2cSGCallCfg(int iHWGCallAddr); Setup the hardware general call

Common Functions
int I2cRx(int iMode); Reads the Rx register of the slave or master
int I2cTx(int iMode, int iTx); Writes in the Tx register of the slave or master
int I2cStr(int iMode, int iStretch); Configures clock stretching
int I2cFifoFlush(int iMode, int iFlush); Flush slave or master Tx FIFO
int I2cSta(int iMode); Reads the status of the slave or master

Application Note AN-1159

Rev. 0 | Page 9 of 16

MASTER TRANSMIT
In order to transmit a byte, the data must first be loaded into
the transmit FIFO. The address of the slave must be specified
in the I2CADR0 register. For a write of data, the write (W)
bit in the address register must be set to zero. Writing to the
I2CADR0 register automatically generates a start condition.

An I2C interrupt is generated on the first clock of a byte
transmitted, when the transmit FIFO is empty or not full, and
Bit 2 in I2CMSTA is set, indicating that the master has just
transmitted a byte. This allows the user to add a byte to the
FIFO. The status of the FIFO can be check in I2CMSTA[1:0]
or the I2CFSTA register.

If only one byte is in the FIFO when initiating the transfer,
the first I2C interrupt occurs on the first clock of the address
transmitted. If two bytes are in the FIFO, then the interrupt
is generated on the first clock of the first byte transmitted.

If the transmit FIFO is not kept full, the transmit interrupt is
generated on each clock edges. The TXUR bit is then set after
the last bit of the last byte has been transmitted. If no data is

placed in the FIFO within ½ clock cycle of the TXUR being
set, that is, during the slave acknowledge bit, the master
automatically ends the transmission.

The stop condition is automatically generated 5.1 µs after the
last byte is transmitted.

The TXREQ interrupt enable bit in the I2CMCON MMR
(I2CMCON[5]) needs to be cleared or the transmit interrupt
will be generated continuously until the STOP condition is
generated.

The TCOMP bit also generates an interrupt if enabled
(I2CMCON[8]), when the stop condition is generated. This
allows to safely turning off the I2C peripheral, for example
before entering low power mode.

An example of the master responding to a request for data from
the slave is shown in Figure 10.

//ENABLE I2C on GPIO
DioCfg(pADI_GPx,0xXXXX);
DioPul(pADI_GPx,0xXX);

//COPY MASTER STATUS REGISTER
uiStatus = I2cSta(MASTER);

//DISABLE TX INTERRUPT
I2cMCfg(0,I2CMCON_IENTX_DIS,I2CMCON_MAS);

//RETURN FROM HANDLER

//SET UP I2C MASTER MODE, 100kHz
I2cMCfg(0,I2CMCON_IENTX,I2CMCON_MAS);
I2cBaud(0xXX,0xXX);

//CHECK FOR TX INTERRUPT
if((uiStatus & I2CMSTA_TXREQ) == I2CMSTA_TXREQ)

//PLACE DATA IN TX FIFO
I2cTx(MASTER,0xXX);

//ENABLE MASTER I2C INTERRUPT
NVIC_EnableIRQ(I2CM_IRQn);

//PLACE FIRST TWO BYTES IN TX FIFO
I2cTx(MASTER,0xXX);

//SET UP DEVICE ADDRESS
I2cMWrCfg(0xA0);

MORE
DATA TO

TRANSMIT?
Y

N

I2C MASTER INITIALIZATION I2C MASTER INTERRUPT HANDLER

10
88

2-
01

0

Figure 10. Master Transmit Flowchart

AN-1159 Application Note

Rev. 0 | Page 10 of 16

SLAVE RECEIVE
As the data is received by an I2C slave, an interrupt is generated
after the eighth clock of each byte is received. If the FIFO is not
read before a third byte is received, RXOF, I2CSSTA[4] is set,
indicating a receive FIFO overflow. The FIFO can be read at this
time. If the FIFO is not read before the rising edge of the ninth
clock, the slave interface automatically delivers a NACK.

To read data from the FIFO, the I2CRX register is used.
RXREQ, I2CSSTA[3] indicates that the slave has received data.

Only reading I2CSRX clears this bit. The I2C interrupt is
generated continuously if enabled and RXREQ is set.

The master automatically sends a stop condition after sending
the last data. The slave detects a STOP condition sets
I2CSSTA[10]. This bit can generate an interrupt if IENSTOP,
I2CSCON[8] is set.

A flowchart of the slave receiving bytes from the master is
shown in Figure 11. Figure 12 shows when the status bits are
set and when the interrupts occur.

//ENABLE I2C on GPIO
DioCfg(pADI_GPx,0xXXXX);
DioPul(pADI_GPx,0xXX);

//RETURN FROM HANDLER

//COPY SLAVE STATUS REGISTER
uiStatus = I2cSta(SLAVE);

//SET UP I2C SLAVE MODE
I2cSCfg(0,I2CSCON_IENRX,I2CSCON_SLV);
I2cSIDCfg(0xA0,0,0,0);

//WAIT FOR MASTER

//CHECK FOR RX INTERRUPT
if((uiStatus&I2CSSTA_RXREQ)==I2CSSTA_RXREQ)

//READ DATA FROM FIFO
ucDat[i] = I2cRx(SLAVE);

//ENABLE SLAVE I2C INTERRUPT
NVIC_EnableIRQ(I2CS_IRQn);

I2C SLAVE INITIALIZATION I2C SLAVE INTERRUPT HANDLER

10
88

2-
01

1

Figure 11. Slave Receive Flowchart

S
TA

R
T

DEVICE
ADDRESS W

R
IT

E

WORD ADDRESS (n) DATA (n)

SDA LINE

M
S

B

LS
B

R
/W

A
C

K

LS
B

A
C

K

M
S

B

A
C

K

DATA (n + 1)

A
C

K

DATA (n + x) S
TO

P

A
C

K

START BIT
SET

RECEIVE
INTERRUPT

RECEIVE
INTERRUPT

RECEIVE
INTERRUPT

RECEIVE
INTERRUPT

STOP BIT
SET

10
88

2-
01

2
Figure 12. Example of a Slave Receive

Application Note AN-1159

Rev. 0 | Page 11 of 16

MASTER RECEIVE
In master mode, to read data from a slave, a similar approach is
used. First, the number of bytes to be read is configured by the
I2CMRXCNT register. This denotes the number of bytes to be
read from the slave, plus one. This is a 8-bit register so 256 bytes
can be received at once. An EXTEND option is also available for
larger transfer. The I2CMCRXCNT reflects the current number
of bytes received by the master.

In order to start receiving data, the read (R) bit is set in the
I2CADR0 register. This initiates a transfer with a start condition
generated with the address and a R/W bit set by the I2CADR0
register. After each byte is received (after the ninth clock, ACK
or NACK), an interrupt is generated. RXREQ, I2CMSTA[3] is

set, indicating that a byte has just been received. Only reading
I2CMRX clears this bit.

When the master does not need to receive more data, it auto-
matically generates a NACK to the last byte received. This tells
the slave to cease transmitting bytes and allows the master to
then generate a stop condition.

If the data received is not read on time and the FIFO is full, the
master delivers a NACK for the extra data received.

A flowchart of the master receiving bytes from the slave is
shown in Figure 13.

//ENABLE I2C on GPIOs
DioCfg(pADI_GPx,0xXXXX);
DioPul(pADI_GPx,0xXX);

//COPY MASTER STATUS REGISTER
uiStatus = I2cSta(MASTER);

//SET UP I2C MASTER MODE, 100kHz
I2cMCfg(0,I2CMCON_IENRX,I2CMCON_MAS);
I2cBaud(0x4E,0x4F);

//CHECK FOR RX INTERRUPT
if((uiStatus & I2CMSTA_RXREQ)
==I2CMSTA_RXREQ)

//READ DATA FROM FIFO
dat[i] = I2cRx(MASTER);

//ENABLE MASTER I2C INTERRUPT
NVIC_EnableIRQ(I2CM_IRQn);

//SET UP SLAVE ADDRESS and
NUMBER OF BYTES TO BE RECEIVED
I2cMRdCfg(0xA0,nbByte,DISABLE);

//RETURN FROM HANDLER

//WAIT FOR FIRST BYTE TO BE RECEIVED

I2C MASTER INITIALIZATION I2C MASTER INTERRUPT HANDLER

10
88

2-
01

3

Figure 13. Master Receive Flowchart

AN-1159 Application Note

Rev. 0 | Page 12 of 16

SLAVE TRANSMIT
The slave generates an interrupt on each request for data to be
transmitted, the first occurring after the ACK of the address,
that is, while Byte 0 of the FIFO is sent. Data needs to be
preloaded into the slave transmit FIFO, otherwise the first read
request from the master results in a NACK being generated.
If the FIFO is preloaded with two sets of data, one interrupt
occurs after the ACK of the address and then after the ACK
of each byte sent. If the FIFO is preloaded with one set of data
only, two interrupts occur after the ACK of the address, the
FIFO emptying after sending the first data.

Once a byte has been transmitted, an interrupt is generated as
long as the master continues to request data.

TXREQ, I2CSSTA[2] is set when there is space in the transmit
FIFO, or each time a byte is transmitted to the master. The
transmit interrupt can be disabled when there is no more data
to transmit and can be re-enabled when detecting the STOP
condition (I2CSSTA[10]). The STOP detection can generate an
interrupt if IENSTOP, I2CSCON[8] is set.

An example of the slave responding to a request for data from
the master is shown in Figure 14. Figure 15 shows when the
status bits are set and when the interrupts occur.

//ENABLE I2C on GPIOs
DioCfg(pADI_GPx,0xXXX);
DioPul(pADI_GPx,0xXX);

//SET UP I2C MASTER MODE
I2cSCfg(0,I2CSCON_IENTX|
 I2CSCON_STOP,I2CSCON_SLV);
I2cSIDCfg(0xA0,0,0,0);

//ENABLE SLAVE I2C INTERRUPT
NVIC_EnableIRQ(I2CS_IRQn);

//PLACE 1 OR 2 BYTES IN TX FIFO
I2cTx(SLAVE,0xXX);

//WAIT FOR MASTER

//PLACE DATA IN TX FIFO
I2cTx(SLAVE,0xXX);MORE

DATA? Y

N

I2C SLAVE INITIALIZATION

//COPY SLAVE STATUS REGISTER
uiStatus = I2cSta(SLAVE);

//CHECK FOR STOP INTERRUPT
if((uiStatus & I2CSSTA_STOP)
==I2CSSTA_STOP)

//ENABLE TX INTERRUPT
I2cSCfg(0,I2CSCON_IENTX,
I2CSCON_SLV);

//PLACE 1 OR 2 BYTES IN TX FIFO
I2cTx(SLAVE,0xXX);

//RETURN FROM HANDLER

//CHECK FOR TX INTERRUPT
if((uiStatus & I2CSSTA_TXREQ
==I2CSSTA_TXREQ)

//DISABLE TX INTERRUPT
I2cSCfg(0,I2CSCON_IENTX_DIS,
I2CSCON_SLV);

I2C SLAVE INTERRUPT HANDLER

10
88

2-
01

4

Figure 14. Slave Transmit Flowchart

R
EA

D

DEVICE
ADDRESS

SDA LINE

A
C

K

N
O

 A
C

K

A
C

K

A
C

K

A
C

K

ST
O

P

R
/W DATA (n + 2) DATA (n + x)DATA (n + 1)DATA (n)

TRANSMIT
INTERRUPT(S)

TRANSMIT
INTERRUPT

TRANSMIT
INTERRUPT

TRANSMIT
INTERRUPT

START BIT SET STOP BIT SET 10
88

2-
01

5

Figure 15. Example of a Slave Transmit

Application Note AN-1159

Rev. 0 | Page 13 of 16

DMA MODE, MASTER TRANSMIT
I2C transfers are initiated with the transmission by the master
of the slave address. When DMA transmit mode is configured,
by setting TXDMA in the I2CMCON MMR, the transfer starts
when the I2C peripheral is fully configured, that is, baud rate,
slave address, and DMA transmit request, and when the DMA
controller is configured and enabled. The I2C master transmit
DMA channel should also be enabled in the NVIC at any time
before starting the transfer.

The DMA transfer is complete when all bytes have been
transferred from memory into the FIFO; this means while the
last two bytes are stored in the FIFO and the third last byte is

being transmitted as shown in Figure 17. The DMA channel is
then disabled automatically in the DMA controller. However,
the I2C peripheral sends a DMA request to the DMA controller
when the FIFO is not full and generates an interrupt. Therefore,
the I2C requests should be masked in the DMA controller to
avoid multiple interrupts (DMARMSKSET).

The DMA controller needs to be reconfigured/re-enabled to
start a new transfer.

Figure 16 shows a flowchart of I2C master transmit DMA
transfer.

//ENABLE I2C on GPIO
DioPul(pADI_GPx,0xXX);
DioCfg(pADI_GPx,0xXXXX);

//SET UP DMA DESCRIPTIORS 6
pADI_DMA->DMAPDBPTR = (unsignedint)&dmaChanDesc;

//SET UP I2C MASTER IN TRANSMIT MODE FOR DMA TRANSFER
I2cMCfg(I2CMCON_TXDMA,0,
I2CMCON_MAS);I2cBaud(0x4E,0x4F);
I2cMWrCfg(0xA0);

//ENABLE SLAVE I2C DMA INTERRUPT
NVIC_EnableIRQ(DMA_I2CM_TX_IRQn);

//WAIT FOR COMPLETION OF TRANSFER

//CONFIGURE DMA CONTROLLER
pADI_DMA->DMAENSET = DMAENSET_I2CMTX;
pADI_DMA->DMACFG = DMACFG_ENABLE_EN;

//INITIATE NEW TRANSFER
pADI_DMA->DMARMSKCLR| = DMARMSKCLR_I2CMTX;
I2cMWrCfg(0xA0);

I2C MASTER INITIALIZATION

//MASK I2C MASTER DMA TRANSMIT REQUEST
pADI_DMA->DMARMSKSET| = DMARMSKSET_I2CMTX;

//REFRESH DMA DESCRIPTOR 6
I2CMTxDmaDesc->ctrlCfg.n_minus_1 = DMA_TX_COUNT-1;
I2CMTxDmaDesc->ctrlCfg.cycle_ctrl = 1;

//ENABLE DMA CHANNEL FOR NEXT TRANSFER
pADI_DMA->DMAENSET| = DMAENSET_I2CMTX;

//RETURN FROM HANDLER

I2C MASTER TRANSMIT DMA INTERRUPT HANDLER

10
88

2-
01

6

Figure 16. Master Transmit DMA Transfer Flowchart

SDA LINE

A
C

K

N
O

 A
C

K

A
C

K

A
C

K

A
C

K

ST
O

P

DATA (n – 1) DATA (n)DATA (n – 2)DATA (n – 3)

I2C MASTER TRANSMIT
DMA INTERRUPT 10

88
2-

01
7

Figure 17. Master Transmit DMA Interrupt

AN-1159 Application Note

Rev. 0 | Page 14 of 16

DMA MODE, MASTER RECEIVE
DMA transfers are enabled in the I2C peripheral by setting
RXDMA in the I2CMCON MMR. The transfer starts when
the DMA controller is configured and enabled and when I2C
peripheral is fully configured, that is, baud rate, slave address,
and DMA transmit request. The I2C master transmit DMA
channel should also be enabled in the NVIC at any time before
starting the transfer.

The DMA transfer is complete when all bytes expected by
the DMA controller have been received. The I2C master

I2CMRXCNT MMR should be also configured with the same
number of bytes.

When the DMA transfer is complete, the corresponding
channel is disabled automatically in the DMA controller. The
DMA controller needs to be reconfigured and re-enabled to
start a new transfer. Initiation of a new transfer is done by
writing the slave address again in the I2CADR0 MMR.

Figure 18 shows a flowchart of DMA transfer with the master
receiving data from the slave.

//ENABLE I2C on GPIO
DioCfg(pADI_GPx,0xXXXX);
DioPul(pADI_GPx,0xXX);

//SET UP DMA DESCRIPTIORS 7
pADI_DMA->DMAPDBPTR = (unsignedint)&dmaChanDesc;

//SET UP I2C MASTER IN RECEIVE MODE FOR DMA TRANSFER
I2cMCfg(I2CMCON_RXDMA,0,
I2CMCON_MAS);I2cBaud(0x4E,0x4F);
I2cMRdCfg(0xA0,DMA_RX_COUNT,0);

//ENABLE MASTER I2C DMA INTERRUPT
NVIC_EnableIRQ(DMA_I2CM_RX_IRQn);

//WAIT FOR COMPLETION OF TRANSFER

//CONFIGURE DMA CONTROLLER
pADI_DMA->DMAENSET = DMAENSET_I2CMRX;
pADI_DMA->DMACFG = DMACFG_ENABLE_EN;

//INITIATE NEW TRANSFER
I2cMRdCfg(0xA0,DMA_RX_COUNT,0);

I2C MASTER INITIALIZATION

//REFRESH DMA DESCRIPTOR 7
I2CMRxDmaDesc->ctrlCfg.n_minus_1 = DMA_RX_COUNT-1;
I2CMRxDmaDesc->ctrlCfg.cycle_ctrl = 1;

//ENABLE DMA CHANNEL FOR NEXT TRANSFER
pADI_DMA->DMAENSET| = DMAENSET_I2CMRX;

//RETURN FROM HANDLER

I2C MASTER RECEIVE DMA INTERRUPT HANDLER

10
88

2-
01

8

Figure 18. Master Receive DMA Transfer Flowchart

Application Note AN-1159

Rev. 0 | Page 15 of 16

DMA MODE, SLAVE RECEIVE AND TRANSMIT
DMA transfers are enabled in the I2C peripheral by setting
TXDMA and/or RXDMA in the I2CSCON MMR. The I2C
peripheral should be configured in slave mode and the I2C
interrupt disabled. NVIC and DMA controller need to be
configured. The DMA transfer is initiated by reception of the
correct I2C address. Only the data bytes are then transferred
into memory. When the DMA transfer is complete, the

corresponding channel is disabled automatically in the DMA
controller. Only the DMA controller needs to be reconfigured
to start a new transfer. Figure 19 shows a flowchart of DMA
transfer with the slave transmitting and receiving.

Note that the DMA transfer in transmit mode ends when the
3rd to last byte is being transmitted, similar to master transmit.

//ENABLE I2C on GPIO
DioCfg(pADI_GPx,0xXXXX);
DioPul(pADI_GPx,0xXX);

//SET UP DMA DESCRIPTIORS 4 AND 5
pADI_DMA->DMAPDBPTR = (unsignedint)&dmaChanDesc;

//SET UP I2C SLAVE MODE FOR DMA TRANSFER
I2cSCfg(I2CSCON_RXDMA|I2CSCON_TXDMA,0,I2CSCON_SLV);
I2cSIDCfg(0xA0,0,0,0);

//ENABLE SLAVE I2C DMA INTERRUPT
NVIC_EnableIRQ(I2CS_IRQn);

//WAIT FOR MASTER

//CONFIGURE DMA CONTROLLER
pADI_DMA->DMAENSET = DMAENSET_I2CSRX|DMAENSET_I2CSTX;
pADI_DMA->DMACFG = DMACFG_ENABLE_EN;

I2C SLAVE INITIALIZATION

//REFRESH DMA DESCRIPTOR 5
I2CSRxDmaDesc->ctrlCfg.n_minus_1 = DMA_RX_COUNT-1;
I2CSRxDm aDesc->ctrlCfg.cycle_ctrl = 1;

//ENABLE DMA CHANNEL FOR NEXT TRANSFER
pADI_DMA->DMAENSET| = DMAENSET_I2CSRX;

//RETURN FROM HANDLER

I2C SLAVE DMA INTERRUPT HANDLER(S)—
EXAMPLE OF RX DMA

10
88

2-
01

9

Figure 19. Slave DMA Transfer Flowchart

AN-1159 Application Note

Rev. 0 | Page 16 of 16

COMPANION CODES
A list and description of companion codes provided is shown in Table 5.

Table 5. Companion Codes
Mode/Flowchart Code Example/Tools
Master Transmit I2Cmaster.c
Slave Receive I2Cslave.c
Master Receive I2Cmaster.c
Slave Transmit I2Cslave.c
DMA Mode, Master Transmit I2CmasterDMA.c
DMA Mode, Master Receive I2CmasterDMA.c
DMA Mode, Slave Receive and Transmit I2CslaveDMA.c

I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

©2012 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN10882-0-9/12(0)

	Introduction
	Revision History
	I2C Fundamentals
	I2C Interface Overview
	Start Condition
	Stop Condition
	Slave Address
	Acknowledge (ACK)/No Acknowledge (NACK)
	Data Transfer
	Repeated Start Condition
	Clock Stretching

	Typical I2C Timing Diagrams
	I2C Implementation on the Cortex-M3–Based MicroConverter
	Configuring the Communication Speed
	ADuCM360 Specific

	Use of the FIFO
	Transmit FIFO
	Receive FIFO
	Use of the DMA Channels

	Master Transmit
	Slave Receive
	Master Receive
	Slave Transmit
	DMA Mode, Master Transmit
	DMA Mode, Master Receive
	DMA Mode, Slave Receive and Transmit
	Companion Codes

