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Active Feedback Improves
Amplifier Phase Accuracy

by James Wong

Using matched op amps and active feedback, you can mini-
mize the phase error and so extend the bandwidth of an ampli-
fier by more than an order of magnitude. This technique is
cheaper than using wideband amplifiers and less sensitive to
the temperature-related drift specifications of passive
components.

Inapplications such as sonar and image-processing systems,
the phase relationship between two or more signals reveals
essential information. These systems require accurate phase
response in their amplifier circuitry to minimize measurement
errors. In such cases, active feedback can often serve much
better than other approaches. A typical op amp is insufficient
in this situation because it introduces significant phase shift
long before it reaches its ~3dB frequency. The consequent
phase error reduces the effective bandwidth of an op amp to
something significantly less than the —3dB point.

You can use a wideband amplifier to overcome this phase-
error problem. If the wideband amplifier operates with a—3dB
bandwidth thatis much higher than that of the signal that you
intend to amplify, then the phase error at your signal’s fre-
quency decreases proportionately. The wideband amplifier's
greater expense is the main drawback to this approach.

If you cascade two or three amplifiers, each of which has its
gainreduced to share the overall gain of the composite ampli-
fier, the gain reduction at each stage of the amplifier increases
the —3dB bandwidth of each stage of the amplifier. Conse-
quently, the overall bandwidth for a given phase accuracy is
increased, but you pay for this improvement with increasingly
higher costs and noise levels.

Another, less expensive way to solve the phase-error problem
istointroduce extra circuitry in the amplifier’s feedback loop,
which provides frequency compensation. You can use an RC
circuit to create a zero in the feedback loop that cancels the
amplifier's pole. This cancellation improves the phase re-
sponse markedly by lessening the ampilifier’s phase-response
roli-off. The chief disadvantage of the RC technique is that it
requires extensive tuning to match the zero with the pole.
Furthermore, the different temperature coefficients of the RC
components cause the zero to drift. And when the zero drifts,
it no longer cancels the pole, and phase error becomes a
problem once again.

Placing an op-amp circuit in the feedback stage of the ampli-
fier creates the active feedback that can overcome the
temperature drift of the RC networks. It is also a thriftier
approach than using a wideband amplifier. You must make
sure, however, that the op amps are very closely matched.
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Monolithically matched dual or quad op amps can provide the
frequency-matching characteristics (to within 1to 2%) neces-
sary for the success of the active-feedback approach. This
close matchingis necessary across the full temperature range
of your application. It's easier to achieve in an integrated dual
or quad op amp thaniitis in discrete resistors and capacitors.

Figure 1 shows a basic active-feedback circuit. It requires an
op amp and two external resistors to achieve phase-error
cancellation. In the circuit, op amp A provides the forward
gain of the composite amplifier. Resistors Ry and Ry/K;
determine the closed loop gain Ay > 1 + Ky. Amplifier A,
provides active feedback to op amp A,. The ratio of resistors
Roand Ry/K,determines the amount of phase-error compen-
sation and has no effect on the forward gain of the composite
amplifier. You obtain optimum error cancellation when Ky =
Ko.

In terms of the complex frequency response, the error terms
for the circuit are given by:

. o |2
magnitude error = [—
PBor,

w

phase error = — (i) .
Bor,

These equations let you compare the phase error associated
with asingle amplifier with that associated with the 2-op-amp,
active-feedback approach. They arise from a complete analy-
sis of the basic circuit and its derivatives (see "Analyzing
compensation techniques”).
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FIGURE 1: Second-order compensation, as provided by
the op amp in the feedback path of this circuit, extends
the effective bandwidth of an amplifier substantially.



TABLE 1: AC-Error Comparison

SINGLE-STAGE CASCADED SECOND-ORDER
CONVENTIONAL (TWO-STAGE) COMPENSATION
PHASE PHASE PHASE
FREQUENCY (DEGREE) (DEGREE) (DEGREE)
SkHz -0.57 -0.36 0
10kHz -1.15 -0.72 —0.0005
50kHz 5.7 -3.62 —0.06
100kHz -11.3 -7.21 -0.46
500kHz —45.0 —45.0 —45.0
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FIGURE 2: Phase shift for single-op-amp, cascaded-op-
amp, and second-order-compensation designs are
charted here. Note the significant improvement brought
about by second-order compensation.
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FIGURE 3: Second-order compensation does carry the
penalty of gain peaking, but this doesn’t become signifi-
cant until close to the corner frequency.

DOMINANT POLES OCCUR AT 500kHz

Table 1 tabulates the phase error and magnitude error for an
amplifier with a gain of 10. The comparison assumes that the
op amp’s unity-gain bandwidth is 5SMHz. As you can see in the
table, the dominant poles of all three amplifiers occur at
500kHz, where the phase shift for each technique is —45°.
Clearly, the compensation techniques do not extend the
bandwidth of the op amp itself. Rather, these second-order
compensation techniques reduce the phase error at lower
frequencies by adding an equal but opposite phase shiftin the
amplifier feedback loop.

If you must limit phase error to less than haif a degree, the
second-order compensation technique increases the effec-
tive bandwidth of your amplifier from about 5kHz to more than
100kHz. If you need to limit phase error entirely, the second-
order compensation reduces phase error virtually to zero at
frequencies to 50kHz; in contrast, a single-stage amplifier
would be limited to well below 500Hz.

The phase and magnitude responses are plotted in Figures 2
and 3, respectively. The single op-amp response serves as a
basis for comparison. The maximum scale of 1.0 represents
the —45° phase-shift frequency. Figure 2 shows that the cas-
caded 2-stage amplifier offers only a slight improvement in
bandwidth, and that the second-order compensation method
offers a significant improvement in effective bandwidth.

THE TRADEOFFS ARE MINOR

The tradeoffs associated with the second-order feedback
technique are minimal. Figure 3 illustrates the appreciable
gain peaking incurred, but the circuit typically peaks about
3dB at the —45° phase frequency, well outside the useful
range. Within the frequency range where phase shift is neg-
ligible, the gain error is also insignificant. In Figure 3, for
example, at 1/10 of the corner frequency, gain error is only
0.1dB, about 1.2%.

In executing the second-order compensation design, it's
extremely important to use op amps with frequency re-
sponses matched to within 1 to 2%. Op amps packaged
separately can have mismatches as high as 10 to 20%, and
high levels of mismatching cause either over- or undercom-
pensation. Overcompensation creates excessive phase peak-
ing, and undercompensation causes early phase roll-off.

Theoretically, second-order compensation works for any
closed-loop gain. In practice though, at low gains, within the
1-to-5 range, the circuit may become unstable due to phase-
margin degradation introduced by the active feedback. As a
rule of thumb, you should work with a gain of 10 or greater.
The match between theoretical and actual performance
improves as the gain of the circuit is increased.



A circuit using the second-order compensation is illustrated

in Figure 4. The op amp used in this example is an OP-470, 20 i
which is unity-gain stable and provides a 6MHz unity-gain 0 .
bandwidth. It's a quad op amp that offers a 1% match in ac —20 HH I
characteristics between the four op amps on the chip. The a0 SINGLE OP AMP
circuit provides a gain of 10 for the amplifier. 5 oo
The actual phase response of the circuit was measured using 8 —80 \
a network analyzer and is compared with a single-stage ﬁ
amplifier in Figure 5. The measurement confirms that the - SECOND-ORDER |1 \
phase shifts of the second-order-compensated design and 120 oM O
the single-stage design converge at —45° and -135°, respec- -0
tively. The second-order response runs virtually flat with —160 ||| \
negligible phase shift to a much higher frequency before 180 m
bandwidth limitation sets in. The roll-off is much steeper for 1k 10k 100k ™ Tom
the second-order system than for the single-stage system. FREQUENCY (Hz)
Figure 6 illustrates more clearly that the second-order cir-
cuit's phase error remains nearly zero out to 100kHz, while FIGURE 5: The phase response of Figure 4's circuit illus-
the single-stage amplifier's low phase-shift bandwidth is trates the improved flatness of response that can be
limited to 2kHz. attributed to second-order compensation.
Figure 6 also reveals a slight amount of phase peaking at
about 100kHz, just before the response rolls off. The peaking
stems from the op amps’ second poles near the unity-gain §
frequency. With a closed-loop gain of 10, the dominant pole 4
and the second pole are separated by only one decade in .3
frequency. This proximity causes secondary effects on the 2
phase response of the amplifier. However, if youincrease the & SECOND-ORDER
closed-loop gain of the circuit, you further separate the two a COMPENSATION
poles, reducing the second-pole effect. g 0 S \
Fortunately, the second-order compensation’s improvement " \\ \
in phase error does not exact much of a penalty in magnitude 2 SINGLE Op AM:\
error. Figure 7 charts the magnitude response versus fre- -3 \
quency. Some gain peaking is apparent, but as predicted, the -4 \
peaking occurs well beyond the amplifier's useful bandwidth. s \
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FIGURE 7: The magnitude response of the second-order-
compensated circuit exhibits peaking at a frequency that
is well beyond the useful range of the circuit.




(Figure 8 shows a close-up of the gain peaking for the
second-order-compensated circuit.) In the frequency range
below 100kHz, gain error is held to less than 0.25dB or 3%. In
comparison to the single-stage approach, a second-order
compensation offers both low phase error and low magni-
tude error over a significantly expanded bandwidth.

Either resistor tolerances or op-amp mismatches can degrade
the compensation circuit's performance but to no great
extent. What does make a big difference is variations in K,
(Figure 9). If you assume that the op amps in Figure 1 match
perfectly, the resistor ratio, Ky, is the only variable that affects
the amount of phase compensation that the feedback circuit
provides. If you decrease K, the gain of op amp Ajis also
decreased; in turn, the dominant pole of A, shifts to a higher
frequency, thereby decreasing the compensation. In the
extreme case, where opamp Ay's gain is reduced to unity, the
circuit behaves as if it had no compensation at all. It then
responds as a single-stage amplifier. On the other hand, if
you increase Ko, the gain of Ais likewise increased, and Ay's
bandwidth decreases; overcompensation results. The end
effect is that phase and gain peak more.

Third-order compensation, which requires another op amp
and two resistorsin the feedback path, provides even greater
phase compensation than afforded by second-order com-
pensation. The schematic for the third-order compensation
circuit is given in Figure 10. The additional compensation
comes from op amp Agzin the feedback path of op amp A,
The basic circuit is the same as that of the second-order
compensation circuit.

The sinusoidal transfer function when the phase difference is
minimized may be written:

1-jre)’

1-0.618034(10) — 0.618034(10) — (1)

Vo
V—lN_(1 +K1)

where: 1= —1—.
Bwr

The numerator contains the phase information and the
denominator contains the magnitude information. Table 2
contrasts the magnitude and phase errors for the second-
order response with that of the third-order response. Magni-
tude error is 38% lower for third-order compensation. Phase
error is reduced from a third-order to a fifth-order term.

The third-order frequency response is plotted in Figure 11 in
comparison to that of the second-order compensation and of
the single op-amp design. Given a prescribed error band —
for example, one degree of phase error — third-order com-
pensation doubles the effective bandwidth of an amplifier
design over the second-order compensation technique.

As youmightimagine, the extra op amp in the feedback loop
causes the gain to peak more at the —45° corner frequency.
However, in the frequency range where phase error is mini-
mal, gain accuracy is also improved. At a frequency ratio
below 0.1, magnitude errors do not exceed 0.1dB.
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FIGURE 8: Taking a closer look at the magnitude
response, you see that below 100kHz, the frequency
range where phase error is negligible, only a small deg-
radation in gain accuracy occurs.
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FIGURE 9: Phase-response sensitivity to variations in the
compensation resistor ratio results in slight over- and
undercompensation.

TABLE 2: Error Comparison of Second-Order vs Third-Order
Compensation

SECOND-ORDER THIRD-ORDER

CLOSED-LOOP GAIN

MAGNITUDE ERROR

PHASE ERROR
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FIGURE 10: Third-order compensation takes the concept
of active feedback one step further, adding another
level of compensation to the feedback path.
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FIGURE 11: For a given phase error, the third-order
compensation technique offers twice the bandwidth that
the second-order technique does.

Figure 12shows a test circuit thatimplements the third-order
compensation. The phase response, measured by a network
analyzer, is compared to that of the second-order compensa-
tion and of a single-op-amp design in Figure 13. The phase
response of the third-order design remains flat beyond
400kHz, double the 200kHz provided by the second-order
design. The magnitude response, on the other hand, has
considerably higher peaking than the second-order design,
but below 350kHz, the third-order design actually provides
lower magnitude error than does the second-order design.
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FIGURE 12: A third-order compensation circuit with
component values that set a gain of 10 for the amplifier
is illustrated here.
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FIGURE 13: The actual phase response of the third-order
circuit remains flat to a higher frequency than the
second-order circuit or the single-op-amp design.
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ANALYZING COMPENSATION TECHNIQUES
A single-stage amplifier without any band-limiting circuit, as
shown in Figure A, rolls off according to the closed-loop gain
of the circuit and the amplifier's own natural frequency re-
sponse. You can approximate the amplifier's open-loop fre-
quency response in this way:
. Ao

open-loop gain A(s) = ———,

Ao

1+—s

o7
where A, is the dc open-loop gain and,®@1is the unity-gain
radian frequency of the amplifier.

The fundamental assumption underlying this approximation is
that the amplifier has a single-pole response. Thus, the
closed-loop response as a function of frequency is given by:

closed-loop gain Ag(s) = 1 1

As long as the loop gain is much greater than unity — which is
usually the case — you can rewrite the expression as:

LY B B

1+ A s

Bor

Figure B illustrates the magnitude and phase response of the
closed-loop amplifier. Notice that, at the -3dB corner fre-
quency o, the phase shift is -45°. Even at 1/10 of the corner
frequency, the amplifier still has a 5.7° phase lag. The maxi-
mum frequency must be nearly two decades below the corner
frequency to reduce phase error to less than one degree.

closed-loop gain Ag(s) =

Figure 1 illustrates the second-order, active-feedback com-
pensation circuit that you can model by writing the transfer
equation for the two amplifier loops. In solving this equation,
assume that each amplifier has a single-pole roll-off response
and that the two amplifier responses match perfectly.

Atthe junction of R, and R,/K,, the resistor divider expression
becomes:

1
Vv .
0(1 +K1)

Similarly, the resistor divider expression for R, and R,/K, is:

1
\ .
2(1 + K2)

For ac response, the loop equations can now be written:

= 1 1041
Aqloop: Vo=|V, — V. —
1oop O[IN (1+K2) 2]3

1 1 oy
Vo— Vy|— -
(1 +K1) ° (1 +K2) 2} S

Solving the simultaneous equations in terms of V,;and V, , the
transfer function is:

Ajloop: V, =

1 +(1 +K2) s
VO (08
—=(1+K1) .
Vin 1+(1+K1)s+(1+K1)(12+K2)82
[OF3 o7

Defining the time constants:

1+K 1+K
! and Ty = 2
(OFg (G2 g

T1=

and substituting those time constants into the previous equa-
tions yields:

VO 1+ T2S
V— = (1 + K1) B
IN 14+1T4S+7T{5S
Ry R,
J_ MWV ’ A
L"OVOUT
VinO
NOTE: R,
FEEDBACK FACTOR 8 = m

FIGURE A: A basic single-stage amplifier without any
band-limiting circuit rolls off according to the closed-
loop gain of the circuit and the amplifier’s own natural
frequency response.
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FIGURE B: Magnitude and phase response are shown
for the basic single-stage amplifier. Notice that, at the
-3dB corner frequency w.the phase shift is —45°.
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ANALYZING COMPENSATION TECHNIQUES Continued

Foroptimumcompensation, the time constants t, and t,are
made equal:

Vo
VIN

1+18

2 2|
1+15+1s

=(1+K1)

For sinusoidal input, where phase information is important, the
complex frequency domain is used:

1+jto

2 2|’

Vv
V—°(jw)=(1+K1)
1+jto-1T0

IN

Now we calculate the complex conjugates to simplify:

2 2
\Y 1+t (1+'cm —'t(o)
V‘9=(1+K1) ( ] ) - J
IN _ (1_120)2) +120)2
[ I
(14K )| —2
2 2 4
| 1-T0 +T0

From this equation, the magnitude error expression can be
derived.

i 33
Magnitude error = —ito

22 44
1-10 +1T0®

fortm « 1, = 1 -1

2 2
1-To

2 2
=1+tow -1
2 2
=T0.
Similarly, the phase error expression can be derived.

Phase error = ARC(1 —j13m3)5 —rscos.

T relates to closed-loop gain as 1. 1+Ky=1+K,,

(V)
therefore, tw=——.
Bor

The transfer function can then be rewritten as:
3
Vo_1 Bor,
1—1— +|—
Bor, Boo,

Using this equation, the phase and magnitude behaviors as
functions of frequency are tabulated in Table A. Note that, at

1/10 of the corner frequency, the compensated circuit
produces a -0.057° phase shift, far superior to the -5.7° pro-
duced by the uncompensated circuit.

TABLE A: Second-Order Compensation Phase and Magni-
tude Behavior ‘

®  PHASE (DEGREE) MAGNITUDE 20 LOG (MAG) IN dB

Bor

0.01 -5.7x107 1.0000 0.0000
0.02 -0.0005 1.0004 0.0035
0.04 —-0.00367 1.0016 0.0139
0.05 -0.00716 1.0025 0.0217
0.06 ~0.01238 1.0036 0.0312
0.07 —0.01965 1.0049 0.0425
0.08 -0.0293 1.0064 0.0554
0.1 -0.0573 1.01 0.0864
0.2 -0.458 1.04 0.3404
03 —1.547 1.0896 0.745
04 -3.662 1.1576 1.271
0.5 -7.162 1.256 1.938
0.7 -14.428 1.3766 2.776
0.8 -27.1125 1.4598 3.2858
1.0 —45.0 1.4125 3.0

You can model the third-order compensation circuit of Figure
10in a similar way. Assume that all three op amps in the circuit
have a single-pole roll-off in the frequency response repre-
sented by:

Ao<s>z(3°1),

S

where o is the amplifier unity-gain crossover frequency.
For ac sinusoidal response, the loop equations can be written:

=@ 1
A,loop: Vo= ?T[Vm— (—1—+?—)V2J
2

. _ 07 1 _ 1
A,loop: V, ’. [(1 +K1)V° (1 +K3) Va}

Ly 29T 1 1 )
Agloop: Vg4 . [(1 +K2)V2 (1 +K3)V3}

Solving the three simultaneous equations in terms of V, and
Viy- the transfer function is:

Vo _ ax’+bx + 1
Vin 1+K ’
ax3+bX2+ 1+ * *1x + 1
1+K, 1+K,

Continued




" ANALYZING COMPENSATION TECHNIQUES Continued
where a=(1+Ky)(1 +Kj),

b=1+K,
s
X=—.
T
: . 1+K,
Define the time constants t, = ,
o7
1+K 1+K
Ty = 2 and Ty = ® then substitute,
(024 (OF 4
v 1 2
+ToS +T,T3S
9. (1+Kj) 2 2’3
VIN

2 3
1 +(1:1+1:3)s +T1T28 +T1ToT3S

The dc gain of the amplifieris (1 + K,). And the ac response has
the general form:

— ={1+K,)e S),
Vi ( + 1) p(S)
1 2
ToS +To T3S
where g,(s) = e 23

2 3
1 +(1:1+r3)s +T1T2S +T1ToT3S

Solve for ac response interms of t;, 1,,and 15:

2
1-1,T30 +jT,0

€p(jo0) = 5

3
1-141,0 +j[(’t1+‘53) (0—111:213(0]

Defining:

2
a=1-1,130,b=1,0m,

2 3
c=1-147,0, d=(‘t1 +13)0.)—‘C11.'213(O

_a+jb _ac+bd +j(bc —ad)
erid T

Ep(jm)

The numerator determines the phase shift of the amplifier.
Solve the numerator of &, (jo):

. ) 2 2 3
ep(jw) =1 +]j [(12—1:1—13) m—(r(cz —TyT3 —21,1:213)a)
2 25
—T{, T30 |-
Tominimize phase shift, make 1,—t,—15=0, and

numerator g, (jo) =

. 2} 3 2 25
1+]j (—12) T4Ty—2T4 T3~ T3 J® —T4T, Tg .

The objective is to eliminate the w®term:
2
—12[‘5 1(1:2— 213)— Ts :| —)O.

First substitute T, + 15 fort,, thenlet t; = at,4, set the
equation equal to zero and solve for o

—(‘c1+a‘c1][t1(‘c1—m1)—(at1ﬂ =0
o’+a—-1=0.
Solving o for the two roots, you obtain:
o =0.618034
a=-1.618034
For minimumphase shift, the relationships t,+13=1, and
T13=0.618t,, are used.
T1=1
1, =1.6180341
74 =0.6180341,

1+K 1+K 1+K
recalling that T, = * L *%2 and Ty = i
(05 o7 (023
Since K, relates to the dc gain 1/p of the amplifier as
(1 + K1) =1/B, the design equations are:
K1 = l - 1 .
B

Substituting and solving for K, and K5 in terms of K,

K, =1.618034 K, + 0.618034
K, =0.618034 K,—0.382.

These three last design equations produce optimum phase
cancellation for an amplifier with any gain. For example, for an
amplifier gain of 10, K,=9, K,=15.18, and K3=5.18.

In order to derive the complete transfer function, the denomi-
nator is similarly solved. Therefore, with:

. . 2 2 4 4 6 6
denominator ¢, (ju)=1-0.618tw —0.618t®w +t ®,
the complete ac response is:

1-j(w)”
2 4 6"
1-0.618034 (tw) —0.618034 (1) —(Tw)

gp(jo) =

Finally, the complete amplifier transfer function is:

Vo

Vin

5
1 -j(tw)
2 2

(1 + K1) 6
1-0.618034 (tw) —0.618034 (t0) — (Tw)




