

Rev. 0 | Page 1 of 20

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

by Witold Kaczurba

AN-1050
APPLICATON NOTE

A Method for Compressing I2C Scripts for the

ADV74xx/AD V78xx V75xx/ADV76xx/AD

INTRODUCTION
This application note describes a method for compressing larg
sets of I2C scripts for microcontroller platforms. The inform-
ation herein is targeted for applications where the user needs to
put over 50 scripts to the memory of one single microcon
This method provides excellent results for sets of scripts
containing m

e

troller.

ore than 200 scripts for more than six devices on
2

to

writes for each

igure
many I2C devices. In such a case, the user requires a lot of

-

ng
 is easy to use, and is easily

ortable to any microcontroller.

TEXT FILE:

SET OF I2C SCRIPTS

an I C bus.

Analog Devices, Inc., multiformat decoders allow users
decode various standards of video. Because a variety of
standards are supported, these video decoders provide various
settings. Each setting contains the bulk of I2C
mode. These writes are collected as scripts.

In some cases, the user may use hundreds of scripts to conf

memory in a small microcontroller to keep all of these scripts.
Note that these scripts may have similar writes as well as unique
writes. This application note details how to compress the script
on the PC side, as well as how to write an efficient decompress
sing method on the microcontroller side. The decompressing
algorithm utilizes more efficient functions requiring less RAM.

This application note includes a script for an Octave program.
Octave is a free (GNU/GPL license) computer program for
numerical computations. This Octave script can compress
scripts and export the results to the C code with decompressi
procedures. The resulting C code
p

OCTAVE
COMPRESSING

SCRIPT
C-CODE:

-COMPRESSED SCRIPT
R-DECOMPRESSO

08
52

2-
00

1

Figure 1. Concept of Compressing Algorithms

AN-1050 Application Note

Rev. 0 | Page 2 of 20

TABLE OF CONTENTS
Introduction .. 1

About the Scripts .. 3

Basic Knowledge ... 3

Construction of the Script ... 3

Compression/Decompression... 6

Usage .. 7

Octave Source Code ... 8

main.m ... 8

load_script.m .. 10

number_of_scripts_in_file.m ... 11

fsubst.m .. 12

find_mat2.m .. 12

script_to_c.m .. 13

Conclusion... 19

Results .. 19

Further Optimizations ... 19

References and Licensing Information 19

Application Note AN-1050

Rev. 0 | Page 3 of 20

ABOUT THE SCRIPTS
BASIC KNOWLEDGE
The compression method described in this application note is
intended to be used with sets of scripts constructed as shown in
the Construction of the Script section. One I2C write consists of
three values:

• device address (to address the device on the I2C bus)
• register address
• value to be written to the register

Usually scripts provided with evaluation boards by Analog
Devices use ascending order by I2C writes. This means that
writes to the same device are in ascending order of register
addresses, such as:

• 42 00 AB
• 42 01 CD
• 42 02 EF

This not accidential; the order of writes makes compression
more efficient because it is more likely to find the same pattern
across various scripts. Note that it is unlikely to find the same
write to the same register of the same device, such as:

• 42 03 04
• 42 03 08

This increases the probability of the same sequences of writes
occurring in different scripts. This is why this application
note describes algorithms in which scripts are checked for
occurrence of sequences of four identical writes, as shown in
Figure 2.

##SCRIPT##
:SCRIPT 1:
42 03 04;
42 04 06;
42 0A 53;
42 0C 23;
42 0F 45;
42 22 39;
42 AA 10;
42 FF 03;
...

##SCRIPT##
:SCRIPT 2:
42 00 03;
42 02 27;
42 03 09;
42 04 FF;
42 0A 53;
42 0C 23;
42 0F 45;
42 22 39;
42 FF 02;
... 08

52
2-

00
2

Figure 2. Sequence of Four Identical Writes Occurs in Two Different Scripts

Storing large sequences (of four writes) that are common for
various script big blocks is beneficial to the microcontroller
side. These common blocks (also called keys) can be stored as
a continuous array in a C program. Thus, each key is easily
addressable. This ease of addressing the keys eliminates many
pointers that would otherwise have to be used in the decom-
presssing algorithm. Each constant pointer requires memory.

CONSTRUCTION OF THE SCRIPT
The Octave script that is used for compression requires an
original set of scripts to be stored in a file in a particular way.
Each original script starts with a header (the first line) contain-
ing the characters ## at both the beginning and the end of the
line. The next line in the script is a small header that must
contain colons at both the beginning and at the end of the line.
The following line, the third line, contains proper I2C writes,
such as:

42 05 02 ; Prim_Mode = 010b for GR

where:
42 indicates the device’s 8-bit, I2C address (0x42).
05 is the 8-bit, register address (0x05).
02 is the 8-bit value (0x02).
Prim_Mode = 010b for GR is an optional, user-defined
comment.

Note the spaces and semicolon in the equation. The last line of
the script is single word End, without any spaces. Scripts are
split by the use of empty lines.

The following pages provide an example portion of the set of scripts
for the ADV7401 evaluation board (EVAL-ADV7401EBZ).

AN-1050 Application Note

Rev. 0 | Page 4 of 20

##CP VGA 640x480##

:640x480 _@ 60 Autodetecting sync source 25.175 MHz out through DAC:

42 05 02 ; Prim_Mode = 010b for GR

42 06 08 ; VID_STD = 1000b for 640 × 480 @ 60

42 1D 47 ; Enable 28 MHz crystal

42 3A 11 ; Set latch clock settings to 001b, Power down ADC3

42 3B 80 ; Enable external bias

42 3C 5C ; PLL_QPUMP to 100b

42 6A 00 ; DLL phase adjust

42 6B 82 ; Enable DE output, swap Pr& Pb

42 73 90 ; Set man_gain

42 7B 1D ; TURN OFF EAV & SAV CODES Set BLANK_RGB_SEL

42 85 03 ; Enable DS_OUT

42 86 0B ; Enable stdi_line_count_mode

42 8A 90 ; VCO range to 00b

42 F4 3F ; Max drive strength

42 0E 80 ; Analog Devices recommended setting

42 52 46 ; Analog Devices recommended setting

42 54 00 ; Analog Devices recommended setting

42 0E 00 ; Analog Devices recommended setting

54 00 13 ; Power-down encoder

74 EE EE ; Power-down HDMI

End

##CP VGA 640x480##

:640x480 _@ 72 Autodetecting sync source 31.5 MHz out through DAC:

42 05 02 ; Prim_Mode = 010b for GR

42 06 09 ; VID_STD = 1001b for 640 × 480 @ 72

42 1D 47 ; Enable 28 MHz crystal

42 3A 11 ; set latch clock settings to 001b, Power down ADC3

42 3B 80 ; Enable external bias

42 3C 5C ; PLL_QPUMP to 100b

42 6A 00 ; DLL phase adjust

42 6B 82 ; Enable DE output, swap Pr& Pb

42 73 90 ; Set man_gain

42 7B 1D ; TURN OFF EAV & SAV CODES Set BLANK_RGB_SEL

42 85 03 ; Enable DS_OUT

42 86 0B ; Enable stdi_line_count_mode

42 F4 3F ; Max drive strength

42 0E 80 ; Analog Devices recommended setting

42 52 46 ; Analog Devices recommended setting

42 54 00 ; Analog Devices recommended setting

42 0E 00 ; Analog Devices recommended setting

54 00 13 ; Power down encoder

74 EE EE ; Power down HDMI

End

Application Note AN-1050

Rev. 0 | Page 5 of 20

##CP VGA 640x480##

:640x480 _@ 75 Autodetecting sync source 31.5 MHz Out through DAC:

42 05 02 ; Prim_Mode = 010b for GR

42 06 0A ; VID_STD =1 010b for 640 × 480 @ 75

42 1D 47 ; Enable 28 MHz crystal

42 3A 11 ; set latch clock settings to 001b, Power down ADC3

42 3B 80 ; Enable external bias

42 3C 5C ; PLL_QPUMP to 100b

42 6A 00 ; DLL phase adjust

42 6B 82 ; Enable DE output, swap Pr& Pb

42 73 90 ; Set man_gain

42 7B 1D ; TURN OFF EAV & SAV CODES Set BLANK_RGB_SEL

42 85 03 ; Enable DS_OUT

42 86 0B ; Enable stdi_line_count_mode

42 F4 3F ; Max drive strength

42 0E 80 ; Analog Devices recommended setting

42 52 46 ; Analog Devices recommended setting

42 54 00 ; Analog Devices recommended setting

42 0E 00 ; Analog Devices recommended setting

54 00 13 ; Power down encoder

74 EE EE ; Power down HDMI

End

AN-1050 Application Note

Rev. 0 | Page 6 of 20

Note that the device address used in the scripts is always an
even number greater than 0. Odd addresses are used for reading
back from the device, which does not occur in this case. Thus,
Address 0x00 is used as an escape code, a special code used for
decompressing.

COMPRESSION/DECOMPRESSION
The Octave script in the Octave Source Code section com-
presses the script on the PC side. An output of Octave script
is C code containing compressed data and the decompression
algorithm.

The Octave script algorithm consists of the following steps:

1. The script is loaded into matrices of various dimensions
(size is dependent on length of script).

2. The matrices are searched for common blocks or keys
where each key consists of four writes.

3. If a common block is found, it is written to a separate block
called keys with a key_number index.

4. Where there is a common block, the block is replaced with
a single write: (0x00, A, B) where A × 256 + B is a value
key_number.

5. The key_number index is increased by one.
6. Finding and replacing the common blocks is repeated until

a search from beginning to end produces no results.

This process creates the structure of matrices as shown in
Figure 3.

0x00, 0x00, 0x09

0x42, 0x3A, 0x13
0x00, 0x00, 0x01

0x00, 0x00, 0x03

0x00, 0x00, 0x04

0x00, 0x00, 0x0A

0x54, 0x87, 0x20
0x74, 0xFC, 0xFC

0x42, 0x69, 0x03
0x42, 0x86, 0x0B
0x42, 0xF3, 0x03
0x00, 0x00, 0x02

0x42, 0x03, 0x0C
0x42, 0x04, 0x57
0x42, 0x1D, 0x47
0x42, 0x31, 0x02

0x42, 0x3B, 0x80
0x42, 0x3D, 0xA2
0x42, 0x3E, 0x6A
0x42, 0x3F, 0xA0

0x42, 0xF9, 0x03
0x42, 0x0E, 0x80
0x42, 0x52, 0x46
0x42, 0x54, 0x00

0x42, 0x7F, 0xFF
0x42, 0x81, 0x30
0x42, 0x90, 0xC9
0x42, 0x91, 0x40

0x42, 0x92, 0x3C
0x42, 0x93, 0xCA
0x42, 0x94, 0xD5
0x42, 0xB1, 0xFF

0x00, 0x00, 0x05
0x00, 0x00, 0x06
0x00, 0x00, 0x07
0x00, 0x00, 0x08

9TH KEY

1ST KEY

2ND KEY

3RD KEY

4TH KEY

10TH KEY 0x42, 0xB6, 0x08
0x42, 0xC0, 0x9A
0x42, 0xCF, 0x50
0x42, 0xD0, 0x4E

0x42, 0xD1, 0xB9
0x42, 0xD6, 0xDD
0x42, 0xD7, 0xE2
0x42, 0xE5, 0x51

0x42, 0x0E, 0x00
0x54, 0x17, 0x02
0x54, 0x00, 0xFC
0x54, 0x01, 0x80

0x54, 0x80, 0x10
0x54, 0x82, 0xC9
0x54, 0x84, 0x06
0x54, 0x88, 0x00

5TH KEY

6TH KEY

7TH KEY

8TH KEY

KEYS ARE SHARED BETWEEN
COMPRESSED SCRIPTS

COMPRESSED SCRIPT

KEYS ARE SHARED BETWEEN
COMPRESSED SCRIPTS

08
52

2-
00

3

Figure 3. Structure of Compressed Scripts

Application Note AN-1050

Rev. 0 | Page 7 of 20

Once the matrices are formatted and common keys are known,
one can start creating C code and perform a small amount of
post-optimization (post-compression). This post-compression
will:

• write representative end of script code (0xFF), so that the
decompressor can find the end of the script.

• determine if the key_number is smaller than 256. If so, its
representing code (0x00, A, B) can be shorted to 0x00, B,
because A is always 0.

• add C code for the decompressor to the end of the C code.

Finally, generated C code appears as shown in Figure 4.

USAGE
The user can use code given in the Octave Source Code section.
It consists of six files that should be put in the same folder. Place
the script.txtfile, that is, a set of scripts in a format described in
the following section, in this folder. After running the script,
create the output.c file containing the compressed script
algorithm for decompression and an example of main code.

0x00, 0x09

0x42, 0x3A,
0x00, 0x01

0x00, 0x03

0x00, 0x04

0x00, 0x0A

0x00, 0x02

0x13

0x54, 0x87, 0x20
0x74, 0xFC, 0xFC
0xFF

0x42, 0x69, 0x03
0x42, 0x86, 0x0B
0x42, 0xF3, 0x03

0x42, 0x03, 0x0C
0x42, 0x04, 0x57
0x42, 0x1D, 0x47
0x42, 0x31, 0x02

0x42, 0x3B, 0x80
0x42, 0x3D, 0xA2
0x42, 0x3E, 0x6A
0x42, 0x3F, 0xA0

0x42, 0xF9, 0x03
0x42, 0x0E, 0x80
0x42, 0x52, 0x46
0x42, 0x54, 0x00

0x42, 0x7F, 0xFF
0x42, 0x81, 0x30
0x42, 0x90, 0xC9
0x42, 0x91, 0x40

0x42, 0x92, 0x3C
0x42, 0x93, 0xCA
0x42, 0x94, 0xD5
0x42, 0xB1, 0xFF

0x00, 0x05
0x00, 0x06
0x00, 0x07
0x00, 0x08

9TH KEY

1ST KEY

2ND KEY

3RD KEY

4TH KEY

10TH KEY 0x42, 0xB6, 0x08
0x42, 0xC0, 0x9A
0x42, 0xCF, 0x50
0x42, 0xD0, 0x4E

0x42, 0xD1, 0xB9
0x42, 0xD6, 0xDD
0x42, 0xD7, 0xE2
0x42, 0xE5, 0x51

0x42, 0x0E, 0x00
0x54, 0x17, 0x02
0x54, 0x00, 0xFC
0x54, 0x01, 0x80

0x54, 0x80, 0x10
0x54, 0x82, 0xC9
0x54, 0x84, 0x06
0x54, 0x88, 0x00

5TH KEY

6TH KEY

7TH KEY

8TH KEY

KEYS ARE SHARED BETWEEN
COMPRESSED SCRIPTS

COMPRESSED SCRIPT

KEYS ARE SHARED BETWEEN
COMPRESSED SCRIPTS

POST COMPRESSING AN
ARRAY WITH KEYS (GREEN)
MAY NOT BRING REAL
BENEFIT, BECAUSE THE
CONSTANT SIZE OF ARRAY
HOLDS THE KEY.
(4 × 3 = 12 BYTES PER KEY)

08
52

2-
00

4

POST COMPRESSION IN RED

Figure 4. Structure of Post-Compressed Script

AN-1050 Application Note

Rev. 0 | Page 8 of 20

OCTAVE SOURCE CODE
All listings should be saved to one folder together with the script.txt file containing the script to be compressed. This code was tested
using Octave Version 3.0.3.

MAIN.M
clear;

filename = 'script.txt';

%%%%%% loading the script: %%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 number_of_scripts = number_of_scripts_in_file(filename);

 %%% load all scripts - script by script %%

 %%%

 for i=1:number_of_scripts

 cmd = sprintf("[script_%d] = load_script(\"%s\", %d);", i, filename, i);

 eval(cmd);

 endfor

 printf("Scripts loaded...\r\n");

 fflush(stdout);

 %%%%%%% find same occurances in different scripts %%%%%%%

 %%%

 NUMBER_OF_LINES = 4;

 key_number = 0;

 do % master loop - runs the optimization until no improvement is done

 % global_found is a variable to show that any improvement was done in full run

 global_found = 0;

 for i=1:number_of_scripts

 i % print the iteration

 fflush(stdout); % update user’s screen

 %% load variable current_script with matrix: %%

 %%

 eval(sprintf("current_script_a = script_%d;", i));

Application Note AN-1050

Rev. 0 | Page 9 of 20

 %%

 %% check if the script is empty or not: %%

 dim = size(current_script_a);

 if ((dim==[0,0]) || (dim(1) < NUMBER_OF_LINES))

 found = 0;

 continue;

 endif

 %%

 [dim1, dim2] = size(current_script_a); % check get size

 start_line = 0;

 %%%% looking for the same pattern across matrix %%%%

 %%

 while (start_line + NUMBER_OF_LINES - 1 < dim1)

 start_line++; % move the pointer

 found = 0; % this pattern (KEY) is not found yet

 key_added = 0; % KEY: variable for maintaining keys (KEY not FOUND - so not added yet)

 % get part of matrix as a pattern to find in other scripts: %

 part_of_script_a = current_script_a(start_line:start_line+NUMBER_OF_LINES-1, :);

 %%%% search in other scripts for pattern %%%%

 %%%

 for j=i+1:number_of_scripts

 eval(sprintf("current_script_b = script_%d;", j));

 %%

 %% check if the script is empty or not: %%

 dim = size(current_script_b);

 if ((dim==[0,0]) || (dim(1) < NUMBER_OF_LINES))

 continue;

 endif

 %%

 val = find_mat2(current_script_b, part_of_script_a);

 if (val != 0)

 %% AS PATTERN WAS FOUND IN THE OTHER SCRIPT - %

 %%%%%%% - ADDING THE KEY TO KEY LIST: %%%%%%%%

 if (key_added == 0)

 key_added = 1; % KEY_ADDED

 key(++key_number, :, :) = part_of_script_a';

 this_key = [0, floor(key_number / 256), mod(key_number, 256)]; % MAX: 65535 KEYS!

AN-1050 Application Note

Rev. 0 | Page 10 of 20

 current_script_a = fsubst(current_script_a, this_key, start_line, \

 start_line+NUMBER_OF_LINES-1);

 eval(sprintf("script_%d = current_script_a;", i));

 [dim1, dim2] = size(current_script_a);

 end

 %% MODIFICATION OF THE SCRIPT %%

 current_script_b = fsubst(current_script_b, this_key, val, val+NUMBER_OF_LINES-1);

 eval(sprintf("script_%d = current_script_b;", j));

 %% ADDING COUNTER OF FOUND LINES

 found = found + 1;

 global_found = 1;

 endif

 endfor

 endwhile

 endfor

 until (!global_found)

 %%% export file to c-file %%%%

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 script_to_c;

LOAD_SCRIPT.M
function [matrix] = load_script(filename, script_number)

 % script_number - number of script (starts from 1) to get

 current_script_number = 0;

 matrix = [];

 if ((fhandle = fopen(filename, "r")) == -1)

 return;

 else

 started_script_line = 0;

 while (!feof(fhandle))

 text_line = fgetl(fhandle);

 if (strncmpi(text_line, "end", 3))

 started_script_line = 0;

 if (current_script_number == script_number)

 return; % needed script has been extracted

 endif

Application Note AN-1050

Rev. 0 | Page 11 of 20

 elseif (started_script_line > 0)

 started_script_line = started_script_line + 1;

 endif

 %%% Is it first line of new script?: %%%

 %%

 if ((length(text_line) > 1) && (text_line(1) == "#") && (text_line(2) == "#"))

 started_script_line = 1;

 current_script_number = current_script_number + 1;

 endif

 %%% Is it next line of the same script?: %%%

 %%

 if ((started_script_line > 2) && (script_number == current_script_number))

 new_line = (sscanf(text_line, "%x %x %x"))'; % don’t forget about '

 if (started_script_line == 3)

 matrix = new_line; % creates matrix

 else

 matrix = [matrix; new_line]; % appends to already created matrix

 endif

 endif

 endwhile

 fclose (fhandle);

 return;

 endif

endfunction

NUMBER_OF_SCRIPTS_IN_FILE.M

function [number_of_scripts] = number_of_scripts_in_file(filename)

 if ((fhandle = fopen(filename, "r")) == -1)

 number_of_scripts = -1;

 fprintf(stdout, "Error while opening file!");

 return;

 else

 number_of_scripts = 0;

 while (!feof(fhandle))

AN-1050 Application Note

Rev. 0 | Page 12 of 20
 difference = mat_a_expanded(i:i+len_b-1) - mat_b_expanded;

 text_line = fgetl(fhandle);

 if (length(text_line > 1) && (text_line(1) == "#") && (text_line(2) == "#"))

 number_of_scripts = number_of_scripts + 1;

 endif

 endwhile

 fclose (fhandle);

 return;

 endif

endfunction

FSUBST.M
function [ret]=fsubst(matrix, sub, first_line, last_line)

 last_line = last_line + 1;

 [dim_a1, dim_a2] = size(matrix);

 ret = matrix(1:first_line-1, :);

 ret = [ret; sub];

 ret = [ret; matrix(last_line:dim_a1, :)];

endfunction

FIND_MAT2.M
function [res] = find_mat2(mat_a, mat_b)

%find_mat2 returns the first line where mat_b is located in mat_a

occurances_found = 0;

[dim_a1, dim_a2] = size(mat_a);

[dim_b1, dim_b2] = size(mat_b);

 res = 0;

% dim_a2

% dim_b2

 mat_a_expanded = mat_a'(:);

 mat_b_expanded = mat_b'(:);

len_b = length(mat_b_expanded);

% which one is bigger?

for (i=1:dim_a2:(dim_a1*dim_a2-dim_b1*dim_b2+1))

Application Note AN-1050

Rev. 0 | Page 13 of 20

 % count number of zero columns

 number_of_matches = length(find(difference == 0));

 if (number_of_matches == len_b)

 %fprintf(stdout, "Offset = %d\r\n", i);

 res(++occurances_found) = ceil(i/dim_a2);

 endif

endfor

endfunction

SCRIPT_TO_C.M
 filename_output = "output.c"

 termination_characters = " 0xFF }; \r\n\r\n";

 %%% opening file to save %%%

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

 if ((fhandle = fopen(filename_output, "w")) == -1)

 return;

 endif

 %%% SIZE OF KEY %%%

 %%%%%%%%%%%%%%%%%%%

 if (key_number > 0)

 [key_dim_a, key_dim_b, key_dim_c] = size(key(1, :, :));

 size_of_key = key_dim_a * key_dim_b * key_dim_c;

 else

 size_of_key = 0;

 end

 %%/* DEVCPP - INCLUDES */ %%

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 fprintf(fhandle, "#include <cstdlib>\r\n");

 fprintf(fhandle, "#include <iostream>\r\n");

 fprintf(fhandle, "using namespace std;\r\n");

 fprintf(fhandle, "#define DECOMPR_SIZE_OF_KEY %d\r\n", size_of_key);

 fprintf(fhandle, "#define DECOMPR_NUMBER_OF_SCRIPTS %d\r\n", number_of_scripts);

 fprintf(fhandle, "#define DECOMPR_NUMBER_OF_KEYS %d\r\n\r\n", key_number);

 fprintf(fhandle, "#define DECOMPR_ADDRESS_OR_ESCAPE 0\r\n");

 fprintf(fhandle, "#define DECOMPR_REGADDR 1\r\n");

 fprintf(fhandle, "#define DECOMPR_VALUE 2\r\n\r\n");

AN-1050 Application Note

Rev. 0 | Page 14 of 20

 fprintf(fhandle, "#define DECOMPR_ESCAPE_CODE 0\r\n");

 fprintf(fhandle, "#define DECOMPR_TERMINATE_VALUE 0xFF\r\n");

 fprintf(fhandle, "#define DECOMPR_USES_2_BYTE_CODES (DECOMPR_NUMBER_OF_KEYS > 254)\r\n");

 for (i=1:number_of_scripts)

 eval(sprintf("current_script = script_%d;", i));

 fprintf(fhandle, "const unsigned char script_%d[] = { \r\n", i);

 [dim1, dim2] = size(current_script);

 for (line = 1:dim1)

 %% POST COMPRESSION / OPTIMIZATION: %%

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 if ((current_script(line, 1) == 0) && (key_number < 255))

 fprintf(fhandle, " 0x%.2X, 0x%.2X,\r\n", \

 current_script(line, 1), \

 current_script(line, 3));

 else

 fprintf(fhandle, " 0x%.2X, 0x%.2X, 0x%.2X,\r\n",

 current_script(line, 1), \

 current_script(line, 2), \

 current_script(line, 3)); \

 endif

 endfor

 fprintf(fhandle, termination_characters);

 endfor

 %%% LISTING THE KEYS %%%%

 %%%%%%%%%%%%%%%%%%%%%%%%%%

 if (key_number > 0)

 fprintf(fhandle, \

 "const unsigned char keys[DECOMPR_NUMBER_OF_KEYS][DECOMPR_SIZE_OF_KEY] = { \r\n");

 endif

 for (n=1:key_number)

 %%%% listing the key %%%%

 %%%%%%%%%%%%%%%%%%%%%%%%%%%

 if ((key_number < 255) && (key(n, 1, 1) == 0))

 fprintf(fhandle, " { 0x%.2X, 0x%.2X, \r\n", \

 key(n, 1, 1), \

 key(n, 3, 1));

Application Note AN-1050

Rev. 0 | Page 15 of 20

 else

 fprintf(fhandle, "{ 0x%.2X, 0x%.2X, 0x%.2X, \r\n", \

 key(n, 1, 1), \

 key(n, 2, 1), \

 key(n, 3, 1));

 endif

 for line=2:key_dim_c-1

 if ((key_number < 255) && (key(n, 1, line) == 0))

 fprintf(fhandle, " 0x%.2X, 0x%.2X, \r\n", \

 key(n, 1, line), \

 key(n, 3, line));

 else

 fprintf(fhandle, " 0x%.2X, 0x%.2X, 0x%.2X, \r\n", \

 key(n, 1, line), \

 key(n, 2, line), \

 key(n, 3, line));

 endif

 endfor

 if ((key_number < 255) && (key(n, 1, key_dim_c) == 0))

 fprintf(fhandle, " 0x%.2X, 0x%.2X }", \

 key(n, 1, key_dim_c), \

 key(n, 3, key_dim_c));

 else

 fprintf(fhandle, " 0x%.2X, 0x%.2X, 0x%.2X }", \

 key(n, 1, key_dim_c), \

 key(n, 2, key_dim_c), \

 key(n, 3, key_dim_c));

 endif

 if (n != key_number) % this is not the last key:

 fprintf(fhandle, ",\r\n", \

 key(n, line, 1), \

 key(n, line, 1), \

 key(n, line, 1));

 else

 fprintf(fhandle, "};\r\n\r\n",

 key(n, line, 1), \

 key(n, line, 1), \

 key(n, line, 1));

 endif

 endfor

 %%% LIST OF POINTERS TO SCRIPTS %%%

AN-1050 Application Note

Rev. 0 | Page 16 of 20

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 fprintf(fhandle,"const unsigned char *script_list[DECOMPR_NUMBER_OF_SCRIPTS] = {\r\n");

 for (i=1:number_of_scripts-1)

 fprintf(fhandle, sprintf(" script_%d,\r\n", i));

 endfor

 i++;

 fprintf(fhandle, sprintf(" script_%d\r\n", i)); % last script

 fprintf(fhandle,"};\r\n\r\n");

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 %% EXAMPLE SEND_I2c_COMMAND: %%

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 fprintf(fhandle, "void send_i2c_command(unsigned char dev_addr, ");

 fprintf(fhandle, "unsigned char reg_addr, unsigned char value) {\r\n");

 fprintf(fhandle, " printf(\"%%.2X %%.2X %%.2X ;\\r\\n\", dev_addr, reg_addr, value);\r\n");

 fprintf(fhandle, " return;\r\n");

 fprintf(fhandle, "}\r\n\r\n");

 %% DECOMPRESSING ALGORITHM: %%

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 fprintf(fhandle, "void decompress(const unsigned char *scr_addr, unsigned char ");

 fprintf(fhandle, "is_key=0)\r\n{\r\n");

 fprintf(fhandle, " unsigned char dev_addr, reg_addr, value; // information ");

 fprintf(fhandle, "that has to be passed to I2C function\r\n\r\n");

 fprintf(fhandle, " unsigned int char_type = DECOMPR_ADDRESS_OR_ESCAPE; ");

 fprintf(fhandle, " // state machine var.\r\n");

 fprintf(fhandle, " unsigned char *script = (unsigned char *) scr_addr; // pointer\r\n");

 fprintf(fhandle, " unsigned int line_counter = 0; // used to terminate when ");

 fprintf(fhandle, "processing of keys (as they do not have END sequence as 0xFF;\r\n\r\n");

 fprintf(fhandle, " do {\r\n");

 fprintf(fhandle, " switch (char_type) {\r\n");

 fprintf(fhandle, " case DECOMPR_ADDRESS_OR_ESCAPE: {\r\n");

 fprintf(fhandle, " if ((*script == DECOMPR_TERMINATE_VALUE))\r\n");

 fprintf(fhandle, " return;\r\n\r\n");

 if (key_number > 0)

 fprintf(fhandle, " if ((*script) == DECOMPR_ESCAPE_CODE) {\r\n\r\n");

 fprintf(fhandle, " // two versions of code ");

 fprintf(fhandle, "(below) requires different offset of pointer:\r\n");

Application Note AN-1050

Rev. 0 | Page 17 of 20

 fprintf(fhandle, " // (0x00, A, B = 16-bit)\r\n");

 fprintf(fhandle, " // (0x00, B = 8-bit code)\r\n");

 fprintf(fhandle, " if (DECOMPR_USES_2_BYTE_CODES) {\r\n");

 fprintf(fhandle, " decompress(keys[(*(script+1))*256 + ");

 fprintf(fhandle, " (*(script+2))-1], 1);\r\n");

 fprintf(fhandle, " script+=3; // shift the pointer\r\n");

 fprintf(fhandle, " } else {\r\n");

 fprintf(fhandle, " decompress(keys[(*(script+1))-1], 1);\r\n");

 fprintf(fhandle, " script+=2; // shift the pointer\r\n");

 fprintf(fhandle, " }\r\n\r\n");

 fprintf(fhandle, " line_counter++;\r\n");

 fprintf(fhandle, " } else {\r\n");

 endif

 fprintf(fhandle, " dev_addr = *script;\r\n");

 fprintf(fhandle, " script++;\r\n");

 fprintf(fhandle, " char_type = DECOMPR_REGADDR;\r\n");

 if (key_number > 0)

 fprintf(fhandle, " }\r\n");

 endif

 fprintf(fhandle, " break;\r\n");

 fprintf(fhandle, " }\r\n");

 fprintf(fhandle, " case DECOMPR_REGADDR: {\r\n");

 fprintf(fhandle, " reg_addr = *script;\r\n");

 fprintf(fhandle, " script++;\r\n");

 fprintf(fhandle, " char_type = DECOMPR_VALUE;\r\n");

 fprintf(fhandle, " break;\r\n");

 fprintf(fhandle, " }\r\n\r\n");

 fprintf(fhandle, " case DECOMPR_VALUE: {\r\n");

 fprintf(fhandle, " value = *script;\r\n");

 fprintf(fhandle, " script++;\r\n");

 fprintf(fhandle, " char_type = DECOMPR_ADDRESS_OR_ESCAPE;\r\n");

 fprintf(fhandle, " \r\n");

 fprintf(fhandle, " // all data should be ready to send:\r\n");

 fprintf(fhandle, " send_i2c_command(dev_addr, reg_addr, \r\n");

 fprintf(fhandle, " value);\r\n");

 fprintf(fhandle, " line_counter++;\r\n");

 fprintf(fhandle, " break;\r\n");

 fprintf(fhandle, " }\r\n\r\n");

 fprintf(fhandle, " default: break;\r\n");

 fprintf(fhandle, " }\r\n");

 fprintf(fhandle, " } while (!(is_key && line_counter==4));\r\n}\r\n\r\n");

 %% EXAMPLE MAIN %%

AN-1050 Application Note

Rev. 0 | Page 18 of 20

 %%%%%%%%%%%%%%%%%%

 fprintf(fhandle, "int main(int argc, char *argv[])\r\n{\r\n");

 fprintf(fhandle, " int i;\r\n\r\n");

 fprintf(fhandle, " for (i=0; i<DECOMPR_NUMBER_OF_SCRIPTS ; i++) {\r\n");

 fprintf(fhandle, " printf(\"## Scripts ##\\n:Script no.%%d:\\n\", i);\r\n");

 fprintf(fhandle, " decompress(script_list[i]);\r\n");

 fprintf(fhandle, " printf(\"End\\n\\n\");\r\n");

 fprintf(fhandle, " }\r\n\r\n");

 fprintf(fhandle, " system(\"PAUSE\");\r\n");

 fprintf(fhandle, " return EXIT_SUCCESS;\r\n}\r\n");

 fclose(fhandle);

Application Note AN-1050

Rev. 0 | Page 19 of 20

CONCLUSION
RESULTS
The compression algorithm discussed in this application note
provides a

• 1.858 compression ratio for a set of 51 scripts for the
ADV7401 evaluation board (4748 bytes were compressed
to 2556)

• 5.056 compression ratio for a set of 251 scripts for the
ADV7840 evaluation board (52,088 bytes were compressed
to 10,268)

The compression ratio was calculated using the size of the ROM
of the compiled program.

A KEIL compiler was used for testing with the Analog Devices
ADuC7024 microcontroller.

FURTHER OPTIMIZATIONS
Users may want to optimize a given algorithm. Tips on how to
do this are outlined here.

Usually very large scripts use 200 to 700 keys. Thus, instead of
using three bytes for decoding the address (0x00, A, B), users
may optimize this by simply substituting ESCAPE code so that:
• 0x00, A gives the address of the key between (0 + A)
• 0x01, A gives the address of the key between (256 + A)
• 0x03, A gives the address of the key between (512 + A)
• 0x05, A gives the address of the key between (768 + A)

Because these values (0x01, 0x03, 0x05) are odd, they cannot be
used to store the address of the device.

Users may also want to use histograms to check values.

Various key lengths may also be used, however this requires
significantly more microcontroller resources during
decompression.

REFERENCES AND LICENSING INFORMATION
Octave is available for download free of cost by accessing the
official GNU operating system website. This website also
contains information about Octave licensing.

Users may want to check generated code with the integrated
development environment for C/C++, like Dev-C++. This
information, as well as licensing information, can be found on
the official Bloodshed Dev-C++ integrated development
environment (IDE) website.

AN-1050 Application Note

Rev. 0 | Page 20 of 20

NOTES

©2009 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN08522-0-12/09(0)

	INTRODUCTION
	TABLE OF CONTENTS
	ABOUT THE SCRIPTS
	BASIC KNOWLEDGE
	CONSTRUCTION OF THE SCRIPT
	COMPRESSION/DECOMPRESSION
	USAGE

	OCTAVE SOURCE CODE
	MAIN.M
	LOAD_SCRIPT.M
	NUMBER_OF_SCRIPTS_IN_FILE.M
	FSUBST.M
	FIND_MAT2.M
	SCRIPT_TO_C.M

	CONCLUSION
	RESULTS
	FURTHER OPTIMIZATIONS
	REFERENCES AND LICENSING INFORMATION

