

AN-1023
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Fall Detection Application by Using 3-Axis Accelerometer ADXL345

by Ning Jia

Rev. 0 | Page 1 of 28

INTRODUCTION
Senior citizens often suffer accidental falls due to their dimi-
nished self-care and self-protection ability. These accidents may
possibly have serious consequences if no aid is given in time.
Statistics show that the majority of serious consequences are not
the direct result of the falls, but rather are due to a delay in
assistance and treatment after a fall. In the event of a fall, the
danger of post-fall consequences can be greatly reduced if relief
personnel can be alerted in time. In light of this, there has been
increased development of devices for detection and prediction
of fall situations.

In recent years, technological advancements in MEMS
accelerometer sensors have made it possible to design a fall
detector based on a 3-axis accelerometer sensor. These fall
detectors operate on the principle of detecting changes in body
position when moving by tracking acceleration changes in three
orthogonal directions of an individual wearing a sensor. The
data is then analyzed algorithmically to determine whether the
individual’s body is falling. If an individual falls, the device
works with a GPS module and a wireless transmitter module to
determine the position and issues an alert for assistance. The
core part of the fall detector is therefore the detection principle
and the algorithm to judge the existence of an emergency fall
situation.

The ADXL345 is the latest 3-axis, digital output accelerometer
from Analog Devices, Inc., and is well-suited for fall detector
applications. This application note, based on the principle research
of fall detection for an individual body, proposes a new solution
for detection of such fall situations using the ADXL345.

ADXL345 MEMS ACCELEROMETER
Micro Electronic Mechanical Systems (MEMS) is a semiconductor
technology that builds micromechanical structures and elec-
trical circuits into a single silicon chip. The MEMS accelerometer
is a sensor based on this technology to achieve acceleration sensing
on single-axis, dual-axis, or tri-axis conditions. Depending on
the application, the accelerometer may offer different ranges of
detection from several g to tens of g of digital or analog output,
and may have multiple interrupt modes. These features offer the
user more convenient and flexible solutions.

The ADXL345 is the latest MEMS 3-axis accelerometer with
digital output from Analog Devices. It features a selectable ±2 g,
±4 g, ±8 g, or ±16 g measurement range; up to 13-bit resolution;
fixed 4 mg/LSB sensitivity; 3 mm × 5 mm × 1 mm ultrasmall
package; 40 μA to 145 μA ultralow power consumption; standard
I2C and SPI digital interface; 32-level FIFO storage; various
built-in motion status detection options; and a flexible interrupt
system. These features greatly simplify the algorithm for fall
detection, and thus make ADXL345 an ideal accelerometer for
fall detector applications. The fall detection solution, as proposed
in this application note, is fully based on the ADXL345’s internal
functions of motion status detection and interrupt system, and
the complexity of the algorithm can be minimized with little
requirement to access the actual acceleration values or to
perform any other computations.

The interrupt system of the ADXL345 is described in the
Interrupts section. For more detailed specifications of the
ADXL345, refer to the data sheet or visit www.analog.com.
Figure 1 shows the system block diagram and Figure 2 shows
the pin definitions of the ADXL345.

INT1

INT2

CS

SDA/
SDI/SDIO

SDO/ALT
ADDRESS

SCL/SCLK

VS VDD I/O

DIGITAL
FILTER

32-LEAD
FIFO

ADC

ADXL345

3-AXIS
SENSOR

SENSE
ELECTRONICS

POWER
MANAGEMENT

CONTROL
AND

INTERRUPT
LOGIC

SERIAL I/O

GND 08
18

5-
00

1

Figure 1. ADXL345 System Block Diagram

TOP VIEW
(Not to Scale)

14

SCL/SCLK

7

1

2

3

4

5

6

VDD I/O

GND

RESERVED

GND

GND

VS

SDA/SDI/SDIO

SDO/ALT ADDRESS

RESERVED

NC

NC = NO CONNECT

INT2

INT1

13

12

11

10

9

8

CS

0
81

85
-0

02

+Z

+X

+Y

Figure 2. ADXL345 Pin Configuration

http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�
http://www.analog.com/�
http://www.analog.com/ADXL345�

AN-1023 Application Note

Rev. 0 | Page 2 of 28

TABLE OF CONTENTS
Introduction .. 1

ADXL345 MEMS Accelerometer ... 1

Interrupts ... 3

Acceleration Change Characteristics during the Fall Process 4

Typical Circuit Connection of the System 5

Using the ADXL345 to Simplify Fall Detection Algorithms5

Example Code ..9

Conclusion... 26

References .. 26

Application Note AN-1023

Rev. 0 | Page 3 of 28

INTERRUPTS
The ADXL345 features two programmable interrupt pins, INT1
and INT2, with a total of eight interrupts: DATA_READY,
SINGLE_TAP, DOUBLE_TAP, activity, inactivity, FREE_FALL,
watermark, and overrun. Each interrupt can be enabled or
disabled independently by setting the appropriate bit in the
INT_ENABLE register, with the option to map to either the
INT1 or the INT2 pin.

DATA_READY

The DATA_READY bit is set when new data is available and
cleared when no new data is available.

SINGLE_TAP

The SINGLE_TAP bit is set when a single acceleration event
that is greater than the value in the THRESH_TAP register
occurs for a shorter length of time than is specified in the DUR
register.

DOUBLE_TAP

The DOUBLE_TAP bit is set when two acceleration events that
are greater than the value in the THRESH_TAP register occur
for a shorter length of time than is specified in the DUR regis-
ter, with the second tap starting after the time specified by the
latent register and within the time specified in the window register.
Figure 3 illustrates the valid SINGLE_TAP and DOUBLE_TAP
interrupts.

0
81

85
-0

0
3

FIRST TAP

TIME LIMIT FOR
TAPS (DUR)

LATENCY
TIME

(LATENT)

TIME WINDOW FOR
SECOND TAP (WINDOW)

SECOND TAP

SINGLE TAP
INTERRUPT

DOUBLE TAP
INTERRUPT

THRESHOLD
(THRESH_TAP)

X
H

I
B

W
IN

T
E

R
R

U
P

T
S

Figure 3. SINGLE_TAP and DOUBLE_TAP Interrupts

Activity

The activity bit is set when acceleration greater than the value
stored in the THRESH_ACT register is experienced.

Inactivity

The inactivity bit is set when acceleration of less than the value
stored in the THRESH_INACT register is experienced for a
longer length of time than is specified in the TIME_INACT
register. The maximum value for TIME_INACT is 255 sec. For
the activity and inactivity interrupts, the user can individually
enable or disable each x-, y-, or z-axis. For example, the activity

interrupt for the x-axis can be enabled while disabling the
interrupt for the y-axis and z-axis. Furthermore, the user can
select between dc-coupled or ac-coupled operation mode for
the activity and inactivity interrupts. In dc-coupled operation,
the current acceleration is compared with THRESH_ACT and
THRESH_INACT directly to determine whether activity or
inactivity is detected. In ac-coupled operation for activity detec-
tion, the acceleration value at the start of activity detection is
taken as a reference value. New samples of acceleration are then
compared to this reference value, and if the magnitude of the
difference exceeds THRESH_ACT, the device triggers an activity
interrupt. In ac-coupled operation for inactivity detection, a
reference value is used again for comparison and is updated
whenever the device exceeds the inactivity threshold. Once the
reference value is selected, the device compares the magnitude
of the difference between the reference value and the current
acceleration with THRESH_INACT. If the difference is below
THRESH_INACT for a total of TIME_INACT, the device is
considered inactive and the inactivity interrupt is triggered.

FREE_FALL

The FREE_FALL bit is set when acceleration of less than the
value stored in the THRESH_FF register is experienced for a
longer length of time than is specified in the TIME_FF register.
FREE_FALL interrupt is mainly used in detection of free-falling
motion. As a result, the FREE_FALL interrupt differs from the
inactivity interrupt in that all axes always participate, the timer
period is much smaller (1.28 sec maximum), and it is always dc-
coupled.

Watermark

The watermark bit is set when the FIFO has filled up to the
value stored in the samples register. It is cleared automatically
when the FIFO is read and its content emptied below the value
stored in the samples register. The FIFO in the ADXL345 has four
operation modes: bypass mode, FIFO mode, stream mode, and
trigger mode; and can store up to 32 samples (x-, y-, and z-
axis). The FIFO function is an important and very useful
feature for the ADXL345; however, the proposed solution for
fall detection does not use the FIFO function and thus is not
further discussed in this application note. For further details on
the FIFO function, see the ADXL345 data sheet.

Overrun

The overrun bit is set when new data has replaced unread data.
The precise operation of the overrun function depends on the
FIFO mode. In bypass mode, the overrun bit is set when new
data replaces unread data in the DATAX, DATAY, and DATAZ
registers. In all other modes, the overrun bit is set when the
FIFO is filled with 32 samples. The overrun bit is cleared by
reading the FIFO contents, and is automatically cleared when
the data is read.

http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�

AN-1023 Application Note

Rev. 0 | Page 4 of 28

ACCELERATION CHANGE CHARACTERISTICS
DURING THE FALL PROCESS
The main research on the principles of fall detection focuses on
the acceleration change characteristics during the process of a
human body falling. Figure 4 to Figure 7 present the accelera-
tion change curves during the motions of walking downstairs,
walking upstairs, sitting down, and standing up from a chair.
(The fall detector is belt-wired on the individual’s body.)

–1024

–768

–512

–256

0

256

512

768

1024

1 51 101 151 201 251 301 351 401

V
A

L
U

E
 (

25
6/

g
)

SAMPLES (50/s)

0
81

85
-0

04

X-AXIS
Y-AXIS
Z-AXIS

VECTOR SUM

Figure 4. Acceleration Change Curves During Process of Walking Downstairs

–1024

–768

–512

–256

0

256

512

768

1024

1 51 101 151 201 251 301 351 401

V
A

L
U

E
 (

25
6/

g
)

SAMPLES (50/s)

X-AXIS
Y-AXIS
Z-AXIS

VECTOR SUM

0
81

85
-0

05

Figure 5. Acceleration Change Curves During Process of Walking Upstairs

–1024

–768

–512

–256

0

256

512

768

1024

1 51 101 151 201 251

V
A

L
U

E
 (

25
6/

g
)

SAMPLES (50/s)

X-AXIS
Y-AXIS
Z-AXIS

VECTOR SUM

0
81

85
-0

06

Figure 6. Acceleration Change Curves During Process of Sitting Down

–1024

–768

–512

–256

0

256

512

768

1024

1 51 101 151 201

V
A

L
U

E
 (

25
6/

g
)

SAMPLES (50/s)

X-AXIS
Y-AXIS
Z-AXIS

VECTOR SUM

0
81

85
-0

07

Figure 7. Acceleration Change Curves During Process of Standing Up

–512

–256

0

256

512

768

1024

1

4 1 3

2

51 101 151 201

V
A

L
U

E
 (

25
6/

g
)

SAMPLES (50/s)

X-AXIS
Y-AXIS
Z-AXIS

VECTOR SUM

2: IMPACT
3: MOTIONLESS
4: INITIAL STATUS

1: WEIGHTLESSNESS

0
81

85
-0

08

Figure 8. Acceleration Change Curves During the Process of Falling

Because the movement of senior citizens is comparatively slow,
the acceleration change is not very conspicuous during the
walking motions in Figure 4 and Figure 5. Figure 8 presents the
acceleration change curves during the process of falling. By
comparing Figure 8 with Figure 4 to Figure 7, it can be seen that
there are four critical characteristics of a falling event. These
four characteristics can be used as the criterion of the fall detec-
tion. They are marked by the boxes in Figure 8 and explained in
detail as follows.

Weightlessness

The phenomenon of weightlessness always occur at the start of
a fall. This phenomenon becomes more significant during free-
fall, and the vector sum of acceleration reduces to near 0 g, The
duration depends on the height of the free-fall. Even though
weightlessness during an ordinary fall is not as significant as
that during a free-fall, the vector sum of acceleration is also less
than 1 g (generally greater than 1 g under normal conditions).
Therefore, this is the first basis for determining the fall status
that can be detected by the FREE_FALL interrupt of the ADXL345.

Application Note AN-1023

Rev. 0 | Page 5 of 28

Impact

After experiencing weightlessness, the human body makes
impact with the ground; the acceleration curve shows this as a
large shock in Figure 8. This shock is detected by the activity
interrupt of the ADXL345. Therefore, the second basis for
determining a fall is the activity interrupt immediately after the
FREE_FALL interrupt.

Motionless

Generally, the human body, after falling and making impact,
cannot rise immediately. Instead, it remains in a motionless
position for a short period. This is shown on the acceleration
curve as a segment of a flat line in Figure 8, and is detected by the
inactivity interrupt of the ADXL345. Therefore, the third basis
for determining a fall situation is the inactivity interrupt after
the activity interrupt.

Initial Status

After a fall, the human body turns over, so the acceleration in
three axes is different from the initial status before the fall. If the
fall detector is belt-wired on the human body to obtain the
initial status of the acceleration, the acceleration data in three
axes can be read after the inactivity interrupt, and the sampling
data can then be compared with the initial status. Therefore, it
is the fourth basis for determining a fall if the difference
between sampling data and initial status exceeds a certain
threshold, for example, 0.7 g.

The combination of these four bases of determination form the
entire fall detection algorithm, and then the system can raise an
alert accordingly for the fall status. The time interval between
interrupts must be within a reasonable range. In normal cases,
the time interval between the FREE_FALL interrupt (weightless-
ness) and the activity interrupt (impact) should not be very long
unless falling from a very tall distance. Similarly, the time interval
between the activity interrupt (impact) and the inactivity inter-
rupt (motionless) should not be very long. A practical example
is given in the Using the ADXL345 to Simplify Fall Detection
Algorithms section with a set of reasonable values. The related
interrupt detection threshold and time parameters can be
flexibly set as needed. Furthermore, if a fall results in serious
consequences such as a coma, the human body remains
motionless for an even longer period of time. This status can
still be detected by the inactivity interrupt. Therefore, a critical
alert can be sent out again if the inactive state was detected to
continue for a certain long period of time after a fall.

TYPICAL CIRCUIT CONNECTION OF THE SYSTEM
The circuit connection between the ADXL345 and an MCU is
very simple. For this application note, a test platform was
created using the ADXL345 and the ADuC7026 microcontroller.
Figure 9 shows the typical connection between the ADXL345
and the ADuC7026. With the CS pin of the ADXL345 tied high,
the ADXL345 works in I2C mode. The SDA and SCL are the
data and the clock of the I2C bus, which are connected to the
corresponding pins of the ADuC7026. A GPIO of the ADuC7026
is connected to the SDO/ALT ADDRESS pin of the ADXL345
to select the I2C address of the ADXL345. The INT1 pin of the
ADXL345 is connected to an IRQ input of the ADuC7026 to
generate the interrupt signal. Almost any MCU or processor
can be used to access the ADXL345 with a circuit connection
similar to the one shown in Figure 9. The ADXL345 can also
work in SPI mode to achieve a higher data rate. For an example
circuit for SPI connection, refer to the ADXL345 data sheet.

ADXL345

VS

CS

SDA/SDI/SDIO

SCL/SCLK

SDO/ALT ADDRESS

INT1

GND

SDA

SCL

GPIO

IRQ

GND

VDD I/OVDD

3.3V

ADuC7026

0
81

85
-0

09

Figure 9. Typical Circuit Connection Between ADXL345 and MCU

USING THE ADXL345 TO SIMPLIFY FALL
DETECTION ALGORITHMS
This section presents the realization of the algorithm from the
solution mentioned previously.

Table 1 presents the function of each register and the values
used in the present algorithm. Refer to the ADXL345 data
sheet for detailed definitions of each register bit.

Note that some of the registers presented in Table 1 have two
algorithm setting values. This indicates that the algorithm
switches between these two values to achieve different detection
purposes. The algorithm flow chart is shown in Figure 10.

http://www.analog.com/ADXL345�
http://www.analog.com/ADuC7026�
http://www.analog.com/ADXL345�
http://www.analog.com/ADuC7026�
http://www.analog.com/ADXL345�
http://www.analog.com/ADuC7026�
http://www.analog.com/ADuC7026�
http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�
http://www.analog.com/ADuC7026�
http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�

AN-1023 Application Note

Rev. 0 | Page 6 of 28

Table 1. ADXL345 Registers Function Descriptions
Hex
Address

Dec
Address Register Name Type

Reset
Value Description

Settings in
Algorithm

Function of the Settings in
Algorithm

0x00 0 DEVID Read-only 0xE5 Device ID Read-only
0x01 to
0x1C

1 to 28 Reserved Reserved Reserved, do not
access

Reserved

0x1D 29 THRESH_TAP Read/write 0x00 Tap threshold Not used
0x1E 30 OFSX Read/write 0x00 X-axis offset 0x06 X-axis offset compensation,

obtain from initialization
calibration

0x1F 31 OFSY Read/write 0x00 Y-axis offset 0xF9 Y-axis offset compensation,
obtain from initialization
calibration

0x20 32 OFSZ Read/write 0x00 Z-axis offset 0xFC Z-axis offset compensation,
obtain from initialization
calibration

0x21 33 DUR Read/write 0x00 Tap duration Not used
0x22 34 Latent Read/write 0x00 Tap latency Not used
0x23 35 Window Read/write 0x00 Tap window Not used
0x24 36 THRESH_ACT Read/write 0x00 Activity threshold 0x20/0x08 Set activity threshold as

2 g/0.5 g
0x25 37 THRESH_INACT Read/write 0x00 Inactivity threshold 0x03 Set inactivity threshold as

0.1875 g
0x26 38 TIME_INACT Read/write 0x00 Inactivity time 0x02/0x0A Set inactivity time as 2 sec or

10 sec
0x27 39 ACT_INACT_CTL Read/write 0x00 Axis enable control

for activity/inactivity
0x7F/0xFF Enable activity and inactivity

of x-, y-, z-axis, wherein
inactivity is ac-coupled mode,
activity is dc-coupled/
ac-coupled mode

0x28 40 THRESH_FF Read/write 0x00 Free-fall threshold 0x0C Set free-fall threshold as 0.75 g
0x29 41 TIME_FF Read/write 0x00 Free-fall time 0x06 Set free-fall time as 30 ms
0x2A 42 TAP_AXES Read/write 0x00 Axis control for

tap/double tap
Not used

0x2B 43 ACT_TAP_STATUS Read-only 0x00 Source of
activity/tap

Read-only

0x2C 44 BW_RATE Read/write 0x0A Data rate and power
mode control

0x0A Set sample rate as 100 Hz

0x2D 45 POWER_CTL Read/write 0x00 Power save features
control

0x00 Set as normal working mode

0x2E 46 INT_ENABLE Read/write 0x00 Interrupt enable
control

0x1C Enable activity, inactivity, free-
fall interrupts

0x2F 47 INT_MAP Read/write 0x00 Interrupt mapping
control

0x00 Map all interrupts to INT1 pin

0x30 48 INT_SOURCE Read-only 0x00 Source of interrupts Read-only
0x31 49 DATA_FORMAT Read/write 0x00 Data format control 0x0B Set as ±16 g measurement

range, 13-bit right alignment,
high level interrupt trigger, I2C
interface

0x32 50 DATAX0 Read-only 0x00 X-Axis Data 0 Read-only
0x33 51 DATAX1 Read-only 0x00 X-Axis Data 1 Read-only
0x34 52 DATAY0 Read-only 0x00 Y-Axis Data 0 Read-only
0x35 53 DATAY1 Read-only 0x00 Y-Axis Data 1 Read-only
0x36 54 DATAZ0 Read-only 0x00 Z-Axis Data 0 Read-only
0x37 55 DATAZ1 Read-only 0x00 Z-Axis Data 1 Read-only
0x38 56 FIFO_CTL Read/write 0x00 FIFO control Not used
0x39 57 FIFO_STATUS Read-only 0x00 FIFO status Not used

Application Note AN-1023

Rev. 0 | Page 7 of 28

START

INITIALIZATION

NO

NO

YES

YES

YES

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

NO

FREE_FALL INTERRUPT
ASSERTED?

ACTIVITY INTERRUPT
ASSERTED?

ACTIVITY INTERRUPT
ASSERTED?

INACTIVITY INTERRUPT
ASSERTED?

INACTIVITY INTERRUPT
ASSERTED?

STABLE STATUS IS DIFFERENT
FROM INITIAL STATUS?

TIMEOUT?

GENERATE FALL ALERT

GENERATE
CRITICAL ALERT

GENERATE CRITICAL
FREE-FALL ALERT

CONTINUOUS FREE_FALL
DETECTED?

TIMEOUT?

0
81

85
-0

10

Figure 10. Algorithm Flow Chart

AN-1023 Application Note

Rev. 0 | Page 8 of 28

Each interrupt threshold and related time parameter in the
algorithm is as follows:

1. After initialization, the system waits for the FREE_FALL
interrupt (weightlessness). THRESH_FF is set to 0.75 g and
TIME_FF is set to 30 ms.

2. After the FREE_FALL interrupt is asserted, the system
begins waiting for the activity interrupt (impact).
THRESH_ACT is set to 2 g and the activity interrupt is
operating in dc-coupled mode.

3. The time interval between the FREE_FALL interrupt
(weightlessness) and the activity interrupt (impact) is set to
200 ms. If time between these two interrupts is greater than
200 ms, then the status is not valid. The 200 ms counter is
realized through the MCU timer.

4. After the activity interrupt is asserted, the system begins
waiting for the inactivity interrupt (motionless after
impact). THRESH_INACT is set to 0.1875 g and
TIME_INACT is set to 2 sec. The inactivity interrupt is
operating in ac-coupled mode.

5. The inactivity interrupt (motionless after impact) should
be asserted within 3.5 sec after the activity interrupt
(impact). Otherwise, the result is invalid. The 3.5 sec
counter is realized through the MCU timer.

6. If the acceleration difference between stable status and
initial status exceeds the 0.7 g threshold, a valid fall is
detected and system raises a fall alert.

7. After detecting a fall, the activity interrupt and inactivity
interrupt must be continuously monitored to determine if
there is a long period of motionlessness after the fall. The
THRESH_ACT is set to 0.5 g and the activity interrupt is

operating in ac-coupled mode. THRESH_INACT is set to
0.1875 g, TIME_INACT is set to 10 sec and the inactivity
interrupt is operating in ac-coupled mode; that is, if the
subject’s body remains motionless for 10 sec, the inactivity
interrupt is asserted and the system raises a critical alert.
When the individual’s body moves, the activity interrupt is
generated and completes the entire sequence.

8. The algorithm can also detect that if the human body free
falls from a tall distance. The two FREE_FALL interrupts
are considered continuous if the interval between them is
shorter than 100 ms. A critical free-fall alert is raised if the
FREE_FALL interrupt (weightlessness) is continuously
asserted for 300 ms

m45.03.010
2
1

2
1 22 gtS

This algorithm is developed in C language to be executed on the
ADuC7026 microcontroller. A test case is also presented with
the proposed solution to verify the algorithm. Each position,
including falling forward, falling backward, falling to the left,
and falling to the right, is tested 20 times. The first 10 trials are
the typical falls without prolonged motionless period after a fall
and the second 10 trials are the typical falls with prolonged
motionless period after fall. Table 2 presents the test results.

From this experiment, the falling status can be effectively
detected with the ADXL345-based proposed solution. Note that
this is only a simple experiment and a more comprehensive,
effective, and long-term experimentation is required to verify
the reliability of this proposed solution.

Table 2. Test Results

Trial No.

Test Condition Test Result

Falling Position
With Prolonged Motionless
Period After Fall

Fall Detected
(No. of Times)

Prolonged Motionless Detected
(No. of Times)

1 to 10 Falling forward No 10 0
11 to 20 Falling forward Yes 10 10
21 to 30 Falling backward No 10 0
31 to 40 Falling backward Yes 10 10
41 to 50 Falling to the left No 10 0
51 to 60 Falling to the left Yes 10 10
61 to 70 Falling to the right No 10 0
71 to 80 Falling to the right Yes 10 10

http://www.analog.com/ADuC7026�
http://www.analog.com/ADXL345�

Application Note AN-1023

Rev. 0 | Page 9 of 28

EXAMPLE CODE
This section presents the example C code of the proposed
solution-based ADXL345 and ADuC7026 platform. There are
four .h files and one .c file in the project, compiled by Keil UV3.
The FallDetection.c file includes the fall detection algorithm.
FallDetection.h details the definitions and variables used for
the fall detection algorithm, implementation of the ADXL345
read/write functions, and ADXL345 initialization.

ADuC7026Driver.h includes ADuC7026 GPIO control
functions, I2C master read and write functions, and ADuC7026
initialization. The xl345.h file includes ADXL345 registers and
bit definitions. The xl345_io.h file includes wrapper functions
for writing and reading bursts from/to the ADXL345 for both
I2C and SPI.

FallDetection.c

#include "FallDetection.h" // Include header files

void IRQ_Handler() __irq // IRQ interrupt

{

unsigned char i;

if((IRQSTA & GP_TIMER_BIT)==GP_TIMER_BIT) // TIMER1 interrupt, interval 20ms

{

T1CLRI = 0; // Clear TIMER1 interrupt

if(DetectionStatus==0xF2) // Strike after weightlessness is detected, waiting for stable

{

TimerWaitForStable++;

if(TimerWaitForStable>=STABLE_WINDOW) // Time out, restart

{

IRQCLR = GP_TIMER_BIT; // Disable ADuC7026's Timer1 interrupt

DetectionStatus=0xF0;

putchar(DetectionStatus);

ADXL345Registers[XL345_THRESH_ACT]=STRIKE_THRESHOLD;

ADXL345Registers[XL345_THRESH_INACT]=NOMOVEMENT_THRESHOLD;

ADXL345Registers[XL345_TIME_INACT]=STABLE_TIME;

ADXL345Registers[XL345_ACT_INACT_CTL]=XL345_INACT_Z_ENABLE | XL345_INACT_Y_ENABLE
| XL345_INACT_X_ENABLE | XL345_INACT_AC | XL345_ACT_Z_ENABLE | XL345_ACT_Y_ENABLE | XL345_ACT_X_ENABLE |
XL345_ACT_DC;

xl345Write(4, XL345_THRESH_ACT, &ADXL345Registers[XL345_THRESH_ACT]);

}

}

else if(DetectionStatus==0xF1) // Weightlessness is detected, waiting for strike

{

TimerWaitForStrike++;

if(TimerWaitForStrike>=STRIKE_WINDOW) // Time out, restart

{

IRQCLR = GP_TIMER_BIT; // Disable ADuC7026's Timer1 interrupt

DetectionStatus=0xF0;

putchar(DetectionStatus);

ADXL345Registers[XL345_THRESH_ACT]=STRIKE_THRESHOLD;

ADXL345Registers[XL345_THRESH_INACT]=NOMOVEMENT_THRESHOLD;

ADXL345Registers[XL345_TIME_INACT]=STABLE_TIME;

ADXL345Registers[XL345_ACT_INACT_CTL]=XL345_INACT_Z_ENABLE | XL345_INACT_Y_ENABLE
| XL345_INACT_X_ENABLE | XL345_INACT_AC | XL345_ACT_Z_ENABLE | XL345_ACT_Y_ENABLE | XL345_ACT_X_ENABLE |
XL345_ACT_DC;

xl345Write(4, XL345_THRESH_ACT, &ADXL345Registers[XL345_THRESH_ACT]);

}

http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�
http://www.analog.com/ADuC7026�
http://www.analog.com/ADuC7026�
http://www.analog.com/ADuC7026�
http://www.analog.com/ADXL345�

AN-1023 Application Note

Rev. 0 | Page 10 of 28

}

}

if((IRQSTA&SPM4_IO_BIT)==SPM4_IO_BIT) // External interrupt form ADXL345 INT0

{

IRQCLR = SPM4_IO_BIT; // Disable ADuC7026's external interrupt

xl345Read(1, XL345_INT_SOURCE, &ADXL345Registers[XL345_INT_SOURCE]);

if((ADXL345Registers[XL345_INT_SOURCE]&XL345_ACTIVITY)==XL345_ACTIVITY) // Activity interrupt
asserted

{

if(DetectionStatus==0xF1) // Waiting for strike, and now strike is detected

{

DetectionStatus=0xF2; // Go to Status "F2"

putchar(DetectionStatus);

ADXL345Registers[XL345_THRESH_ACT]=STABLE_THRESHOLD;

ADXL345Registers[XL345_THRESH_INACT]=NOMOVEMENT_THRESHOLD;

ADXL345Registers[XL345_TIME_INACT]=STABLE_TIME;

ADXL345Registers[XL345_ACT_INACT_CTL]=XL345_INACT_Z_ENABLE | XL345_INACT_Y_ENABLE

| XL345_INACT_X_ENABLE | XL345_INACT_AC | XL345_ACT_Z_ENABLE | XL345_ACT_Y_ENABLE | XL345_ACT_X_ENABLE |
XL345_ACT_AC;

xl345Write(4, XL345_THRESH_ACT, &ADXL345Registers[XL345_THRESH_ACT]);

IRQEN|=GP_TIMER_BIT; // Enable ADuC7026's Timer1 interrupt

TimerWaitForStable=0;

}

else if(DetectionStatus==0xF4) // Waiting for long time motionless, but a movement is
detected

{

DetectionStatus=0xF0; // Go to Status "F0", restart

putchar(DetectionStatus);

ADXL345Registers[XL345_THRESH_ACT]=STRIKE_THRESHOLD;

ADXL345Registers[XL345_THRESH_INACT]=NOMOVEMENT_THRESHOLD;

ADXL345Registers[XL345_TIME_INACT]=STABLE_TIME;

ADXL345Registers[XL345_ACT_INACT_CTL]=XL345_INACT_Z_ENABLE | XL345_INACT_Y_ENABLE
| XL345_INACT_X_ENABLE | XL345_INACT_AC | XL345_ACT_Z_ENABLE | XL345_ACT_Y_ENABLE | XL345_ACT_X_ENABLE |
XL345_ACT_DC;

xl345Write(4, XL345_THRESH_ACT, &ADXL345Registers[XL345_THRESH_ACT]);

}

}

else if((ADXL345Registers[XL345_INT_SOURCE]&XL345_INACTIVITY)==XL345_INACTIVITY) // Inactivity
interrupt asserted

{

if(DetectionStatus==0xF2) // Waiting for stable, and now stable is detected

{

DetectionStatus=0xF3; // Go to Status "F3"

IRQCLR = GP_TIMER_BIT;

putchar(DetectionStatus);

xl345Read(6, XL345_DATAX0, &ADXL345Registers[XL345_DATAX0]);

DeltaVectorSum=0;

for(i=0;i<3; i++)

{

Acceleration[i]=ADXL345Registers[XL345_DATAX1+i*2]&0x1F;

Acceleration[i]=(Acceleration[i]<<8)|ADXL345Registers[XL345_DATAX0+i*2];

if(Acceleration[i]<0x1000)

{

Application Note AN-1023

Rev. 0 | Page 11 of 28

Acceleration[i]=Acceleration[i]+0x1000;

}

else //if(Acceleration[i]>= 0x1000)

{

Acceleration[i]=Acceleration[i]-0x1000;

}

if(Acceleration[i]>InitialStatus[i])

{

DeltaAcceleration[i]=Acceleration[i]-InitialStatus[i];

}

else

{

DeltaAcceleration[i]=InitialStatus[i]-Acceleration[i];

}

DeltaVectorSum=DeltaVectorSum+DeltaAcceleration[i]*DeltaAcceleration[i];

}

if(DeltaVectorSum>DELTA_VECTOR_SUM_THRESHOLD) // The stable status is different
from the initial status

{

DetectionStatus=0xF4; // Valid fall detection

putchar(DetectionStatus);

ADXL345Registers[XL345_THRESH_ACT]=STABLE_THRESHOLD;

ADXL345Registers[XL345_THRESH_INACT]=NOMOVEMENT_THRESHOLD;

ADXL345Registers[XL345_TIME_INACT]=NOMOVEMENT_TIME;

ADXL345Registers[XL345_ACT_INACT_CTL]=XL345_INACT_Z_ENABLE |
XL345_INACT_Y_ENABLE | XL345_INACT_X_ENABLE | XL345_INACT_AC | XL345_ACT_Z_ENABLE | XL345_ACT_Y_ENABLE |
XL345_ACT_X_ENABLE | XL345_ACT_AC;

xl345Write(4, XL345_THRESH_ACT, &ADXL345Registers[XL345_THRESH_ACT]);

}

else // Delta vector sum does not exceed the threshold

{

DetectionStatus=0xF0; // Go to Status "F0", restar

putchar(DetectionStatus);

ADXL345Registers[XL345_THRESH_ACT]=STRIKE_THRESHOLD;

ADXL345Registers[XL345_THRESH_INACT]=NOMOVEMENT_THRESHOLD;

ADXL345Registers[XL345_TIME_INACT]=STABLE_TIME;

ADXL345Registers[XL345_ACT_INACT_CTL]=XL345_INACT_Z_ENABLE |
XL345_INACT_Y_ENABLE | XL345_INACT_X_ENABLE | XL345_INACT_AC | XL345_ACT_Z_ENABLE | XL345_ACT_Y_ENABLE |
XL345_ACT_X_ENABLE | XL345_ACT_DC;

xl345Write(4, XL345_THRESH_ACT, &ADXL345Registers[XL345_THRESH_ACT]);

}

}

else if(DetectionStatus==0xF4) // Wait for long time motionless, and now it is detected

{

DetectionStatus=0xF5; // Valid critical fall detection

putchar(DetectionStatus);

ADXL345Registers[XL345_THRESH_ACT]=STRIKE_THRESHOLD;

ADXL345Registers[XL345_THRESH_INACT]=NOMOVEMENT_THRESHOLD;

ADXL345Registers[XL345_TIME_INACT]=STABLE_TIME;

ADXL345Registers[XL345_ACT_INACT_CTL]=XL345_INACT_Z_ENABLE | XL345_INACT_Y_ENABLE
| XL345_INACT_X_ENABLE | XL345_INACT_AC | XL345_ACT_Z_ENABLE | XL345_ACT_Y_ENABLE | XL345_ACT_X_ENABLE |
XL345_ACT_DC;

xl345Write(4, XL345_THRESH_ACT, &ADXL345Registers[XL345_THRESH_ACT]);

AN-1023 Application Note

Rev. 0 | Page 12 of 28

DetectionStatus=0xF0; // Go to Status "F0", restart

putchar(DetectionStatus);

}

}

else if((ADXL345Registers[XL345_INT_SOURCE]&XL345_FREEFALL)==XL345_FREEFALL) // Free fall
interrupt asserted

{

if(DetectionStatus==0xF0) // Waiting for weightless, and now it is detected

{

DetectionStatus=0xF1; // Go to Status "F1"

putchar(DetectionStatus);

ADXL345Registers[XL345_THRESH_ACT]=STRIKE_THRESHOLD;

ADXL345Registers[XL345_THRESH_INACT]=NOMOVEMENT_THRESHOLD;

ADXL345Registers[XL345_TIME_INACT]=STABLE_TIME;

ADXL345Registers[XL345_ACT_INACT_CTL]=XL345_INACT_Z_ENABLE | XL345_INACT_Y_ENABLE
| XL345_INACT_X_ENABLE | XL345_INACT_AC | XL345_ACT_Z_ENABLE | XL345_ACT_Y_ENABLE | XL345_ACT_X_ENABLE |
XL345_ACT_DC;

xl345Write(4, XL345_THRESH_ACT, &ADXL345Registers[XL345_THRESH_ACT]);

IRQEN|=GP_TIMER_BIT; // Enable ADuC7026's Timer1 interrupt

TimerWaitForStrike=0;

TimerFreeFall=0;

}

else if(DetectionStatus==0xF1) // Waiting for strike after weightless, and now a new
free fall is detected

{

if(TimerWaitForStrike<FREE_FALL_INTERVAL) // If the free fall interrupt is
continuously assert within the time of "FREE_FALL_INTERVAL",

{ // then it is considered a continuous free fall

TimerFreeFall=TimerFreeFall+TimerWaitForStrike;

}

else // Not a continuous free fall

{

TimerFreeFall=0;

}

TimerWaitForStrike=0;

if(TimerFreeFall>=FREE_FALL_OVERTIME) // If the continuous time of free fall is longer
than "FREE_FALL_OVERTIME"

{ // Consider that a free fall from high place is detected

DetectionStatus=0xFF;

putchar(DetectionStatus);

ADXL345Registers[XL345_THRESH_ACT]=STRIKE_THRESHOLD;

ADXL345Registers[XL345_THRESH_INACT]=NOMOVEMENT_THRESHOLD;

ADXL345Registers[XL345_TIME_INACT]=STABLE_TIME;

ADXL345Registers[XL345_ACT_INACT_CTL]=XL345_INACT_Z_ENABLE | XL345_INACT_Y_ENABLE
| XL345_INACT_X_ENABLE | XL345_INACT_AC | XL345_ACT_Z_ENABLE | XL345_ACT_Y_ENABLE | XL345_ACT_X_ENABLE |
XL345_ACT_DC;

xl345Write(4, XL345_THRESH_ACT, &ADXL345Registers[XL345_THRESH_ACT]);

DetectionStatus=0xF0;

putchar(DetectionStatus);

}

}

else

{

Application Note AN-1023

Rev. 0 | Page 13 of 28

TimerFreeFall=0;

}

}

IRQEN |=SPM4_IO_BIT; // Enable ADuC7026's external interrupt

}

}

void main(void)

{

ADuC7026_Initiate(); // ADuC7026 initialization

ADXL345_Initiate(); // ADXL345 initialization

DetectionStatus=0xF0; // Clear detection status, start

InitialStatus[0]=0x1000; // X axis=0g, unsigned short int, 13 bit resolution, 0x1000 = 4096 = 0g,
+/-0xFF = +/-256 = +/-1g

InitialStatus[1]=0x0F00; // Y axis=-1g

InitialStatus[2]=0x1000; // Z axis=0g

IRQEN =SPM4_IO_BIT; // Enable ADuC7026's external interrupt, to receive the interrupt from
ADXL345 INT0

while(1) // Endless loop, wait for interrupts

{

;

}

}

AN-1023 Application Note

Rev. 0 | Page 14 of 28

FallDetection.h

#include "ADuC7026Driver.h"

#include "xl345.h"

#include "xl345_io.h"

// Definitions used for Fall Detection Algorithm

#define STRIKE_THRESHOLD 0x20 //62.5mg/LSB, 0x20=2g

#define STRIKE_WINDOW 0x0A //20ms/LSB, 0x0A=10=200ms

#define STABLE_THRESHOLD 0x08 //62.5mg/LSB, 0x10=0.5g

#define STABLE_TIME 0x02 //1s/LSB, 0x02=2s

#define STABLE_WINDOW 0xAF //20ms/LSB, 0xAF=175=3.5s

#define NOMOVEMENT_THRESHOLD 0x03 //62.5mg/LSB, 0x03=0.1875g

#define NOMOVEMENT_TIME 0x0A //1s/LSB, 0x0A=10s

#define FREE_FALL_THRESHOLD 0x0C //62.5mg/LSB, 0x0C=0.75g

#define FREE_FALL_TIME 0x06 //5ms/LSB, 0x06=30ms

#define FREE_FALL_OVERTIME 0x0F //20ms/LSB, 0x0F=15=300ms

#define FREE_FALL_INTERVAL 0x05 //20ms/LSB, 0x05=100ms

#define DELTA_VECTOR_SUM_THRESHOLD 0x7D70 //1g=0xFF, 0x7D70=0.7g^2

// Variables used for Fall Detection Algorithm

unsigned char DetectionStatus; // Detection status:

// 0xF0: Start

// 0xF1: Weightlessness

// 0xF2: Strike after weightlessness

// 0xF3: Stable after strike, valid fall detection

// 0xF4: Long time motionless, valid critical fall detection

// 0xFF: Continuous free fall, free fall from a high place

unsigned char TimerWaitForStable; // Counter of time that wait for stable after strike

unsigned char TimerWaitForStrike; // Counter of time that wait for strike after weightless

unsigned char TimerFreeFall; // Counter of continuous time for free fall

unsigned short int InitialStatus[3]; // Initial status for X-, Y-, Z- axis

unsigned short int Acceleration[3]; // Acceleration for X-, Y-, Z- axis

unsigned long int DeltaAcceleration[3]; // Acceleration[] - Initial_Status[]

unsigned long int DeltaVectorSum; // Vector sum of the DeltaAcceleration[]

BYTE ADXL345Registers[57]; // ADXL345 registers array, total 57 registers in ADXL345

// Implementation of the read function based ADuC7026

void xl345Read(unsigned char count, unsigned char regaddr, unsigned char *buf)

{

BYTE r;

WORD RegisterAddress;

for (r=0;r<count;r++) // Read the register

{

RegisterAddress = regaddr+r;

WriteData[0] = RegisterAddress;

ReadViaI2C(XL345_ALT_ADDR, 0, 1);

buf[r] = ReadData[0];

}

Application Note AN-1023

Rev. 0 | Page 15 of 28

}

// Implementation of the write function based ADuC7026

void xl345Write(unsigned char count, unsigned char regaddr, unsigned char *buf)

{

BYTE r;

WORD RegisterAddress;

for (r=0;r<count;r++) // Write the register

{

RegisterAddress = regaddr+r;

WriteData[0] = RegisterAddress;

WriteData[1] = buf[r];

WriteViaI2C(XL345_ALT_ADDR, 0, 1);

}

}

void ADXL345_Initiate() // ADXL345 initialization, refer to ADXL345 data sheet

{

xl345Read(1, XL345_DEVID, &ADXL345Registers[XL345_DEVID]);

//putchar(ADXL345Registers[XL345_DEVID]); //byte

ADXL345Registers[XL345_OFSX]=0xFF;

ADXL345Registers[XL345_OFSY]=0x05;

ADXL345Registers[XL345_OFSZ]=0xFF;

xl345Write(3, XL345_OFSX, &ADXL345Registers[XL345_OFSX]);

ADXL345Registers[XL345_THRESH_ACT]=STRIKE_THRESHOLD;

ADXL345Registers[XL345_THRESH_INACT]=NOMOVEMENT_THRESHOLD;

ADXL345Registers[XL345_TIME_INACT]=STABLE_TIME;

ADXL345Registers[XL345_ACT_INACT_CTL]=XL345_INACT_Z_ENABLE|XL345_INACT_Y_ENABLE | XL345_INACT_X_ENABLE
| XL345_INACT_AC | XL345_ACT_Z_ENABLE|XL345_ACT_Y_ENABLE | XL345_ACT_X_ENABLE | XL345_ACT_DC;

ADXL345Registers[XL345_THRESH_FF]=FREE_FALL_THRESHOLD;

ADXL345Registers[XL345_TIME_FF]=FREE_FALL_TIME;

xl345Write(6, XL345_THRESH_ACT, &ADXL345Registers[XL345_THRESH_ACT]);

ADXL345Registers[XL345_BW_RATE]=XL345_RATE_100;

ADXL345Registers[XL345_POWER_CTL]=XL345_STANDBY;

ADXL345Registers[XL345_INT_ENABLE]=XL345_ACTIVITY | XL345_INACTIVITY | XL345_FREEFALL;

ADXL345Registers[XL345_INT_MAP]=0x00;

xl345Write(4, XL345_BW_RATE, &ADXL345Registers[XL345_BW_RATE]);

ADXL345Registers[XL345_DATA_FORMAT]=XL345_FULL_RESOLUTION | XL345_DATA_JUST_RIGHT | XL345_RANGE_16G;

xl345Write(1, XL345_DATA_FORMAT, &ADXL345Registers[XL345_DATA_FORMAT]);

ADXL345Registers[XL345_POWER_CTL]=XL345_MEASURE;

xl345Write(1, XL345_POWER_CTL, &ADXL345Registers[XL345_POWER_CTL]);

xl345Read(1, XL345_INT_SOURCE, &ADXL345Registers[XL345_INT_SOURCE]);

}

AN-1023 Application Note

Rev. 0 | Page 16 of 28

ADuC7026Driver.h

#include <ADuC7026.h>

// Definitions of data type

#define BYTE unsigned char // 8_bits

#define WORD unsigned short int // 16_bits

#define DWORD unsigned long int // 32_bits

#define ADXL345_I2C_ADDRESS_SELECT 0x40 // GPIO:P4.0, to select the ADXL345's I2C address

// Variables for I2C operation, to implement burst read/write based ADuC7026, maximum number to burst
read/write is 8 bytes

BYTE Steps, Status;

BYTE ReadData[8], WriteData[9];

// Rewrite the putchar() function, send one byte data via UART

int putchar(int ch)

{

COMTX=ch;

while(!(0x020==(COMSTA0 & 0x020)))

{;}

return ch;

}

//GPIO Control functions

void OutputBit(BYTE GPIONum, BYTE Data) // Write the pin of "GPIONum" with "Data" (0 or 1)

{

DWORD Temp;

Temp=1<<(GPIONum&0x0F);

switch(GPIONum>>4)

{

case 0:

GP0DAT|=(Temp<<24);

if(Data==0)

{

GP0CLR=(Temp<<16);

}

else

{

GP0SET=(Temp<<16);

}

break;

case 1:

GP1DAT|=(Temp<<24);

if(Data==0)

{

GP1CLR=(Temp<<16);

}

else

{

Application Note AN-1023

Rev. 0 | Page 17 of 28

GP1SET=(Temp<<16);

}

break;

case 2:

GP2DAT|=(Temp<<24);

if(Data==0)

{

GP2CLR=(Temp<<16);

}

else

{

GP2SET=(Temp<<16);

}

break;

case 3:

GP3DAT|=(Temp<<24);

if(Data==0)

{

GP3CLR=(Temp<<16);

}

else

{

GP3SET=(Temp<<16);

}

break;

case 4:

GP4DAT|=(Temp<<24);

if(Data==0)

{

GP4CLR=(Temp<<16);

}

else

{

GP4SET=(Temp<<16);

}

break;

}

}

// ADuC7026 initialization

void UART_Initiate() // ADuC7026 UART initialization, initiate the UART Port to 115200bps

{

POWKEY1 = 0x01; // Start PLL setting,changeless

POWCON=0x00;

POWKEY2 = 0xF4; // Finish PLL setting,changeless

GP1CON = 0x2211; // I2C on P1.2 and P1.3. Setup tx & rx pins on P1.0 and P1.1 for UART

COMCON0 = 0x80; // Setting DLAB

COMDIV0 = 0x0B; // Setting DIV0 and DIV1 to DL calculated

COMDIV1 = 0x00;

COMCON0 = 0x07; // Clearing DLAB

COMDIV2 = 0x883E; // Fractional divider

AN-1023 Application Note

Rev. 0 | Page 18 of 28

// M=1

// N=01101010101=853

// M+N/2048=1.4165

// 41.78MHz/(16*2*2^CD*DL*(M+N/2048)) //CD=0 DL=0B=11

// 115.2Kbps M+N/2048 =1.0303 M=1, N=62=0x3EH=000 0011 1110

//comdiv2=0x883E

}

void I2C1_Initiate() // ADuC7026 I2C1 initialization, initiate the I2C1 Port to 100kbps

{

GP1CON = 0x2211; // I2C on P1.2 and P1.3. Setup tx & rx pins on P1.0 and P1.1 for UART

I2C1CFG = 0x82; // Master Enable & Enable Generation of Master Clock

I2C1DIV = 0x3232; // 0x3232 = 400kHz

// 0xCFCF = 100kHz

FIQEN |= SM_MASTER1_BIT; //Enable I2C1 Master Interupt

}

void Timer1_Initiate() // ADuC7026 Timer1 initialization, Interval = 20ms

{

T1LD = 0xCC010;

T1CON = 0xC0;

}

void ADuC7026_Initiate(void) // ADuC7026 initialization, initiate the UART, I2C1, Timer1, and GPIOs

{

UART_Initiate();

I2C1_Initiate() ;

Timer1_Initiate();

OutputBit(ADXL345_I2C_ADDRESS_SELECT,0); //Grounding the SDO (p4.0), I2C address for writing and
reading is 0xA6 and 0xA7

}

// ADuC7026 I2C1 Master, implement burst read/write based ADuC7026, maximum number to burst read/write is 8
bytes

// support 1 byte address and dual byte address

// enable I2C1 interrupt as FIQ interrupt, burst read/write is realized in the FIQ interrupt

void WriteViaI2C(BYTE DeviceAddr, BYTE AddrType, BYTE NumberOfWriteBytes)

// Write "NumberOfWriteBytes" data to "DeviceAddr" address

// AddrType=0, single-byte address; AddrType=1, dual byte address

// Data to write is saved in "WriteData[]"

{

Status=0;

Steps=NumberOfWriteBytes+AddrType+1;

I2C1ADR = DeviceAddr<<1;

I2C1CNT=NumberOfWriteBytes+AddrType-1;

I2C1MTX = WriteData[Status];

while(Steps != Status)

{

;

}

}

Application Note AN-1023

Rev. 0 | Page 19 of 28

void ReadViaI2C(BYTE DeviceAddr, BYTE AddrType, BYTE NumberOfReadBytes)

// Read "NumberOfWriteBytes" data from "DeviceAddr" address

// AddrType=0, single byte address; AddrType=1, dual byte address

// Readback data is saved in "ReadData[]"

{

Status=0;

Steps=AddrType+1;

I2C1ADR = DeviceAddr<<1;

I2C1MTX = WriteData[Status];

while(Steps != Status)

{

;

}

Status=0;

Steps=NumberOfReadBytes;

I2C1CNT=NumberOfReadBytes-1;

I2C1ADR = (DeviceAddr<<1)+1;

while(Steps != Status)

{

;

}

}

void FIQ_Handler() __fiq // FIQ interrupt

{

// ADuC7026 Transmit

if(((I2C1MSTA & 0x4) == 0x4) && (Status < (Steps-1)))

{

Status++;

I2C1MTX = WriteData[Status];

}

else if(((I2C1MSTA & 0x4) == 0x4) && (Status == (Steps-1)))

{

Status ++;

}

// ADuC7026 Receive

else if (((I2C1MSTA & 0x8) == 0x8) && (Status <= (Steps-1)))

{

ReadData[Status] = I2C1MRX;

Status ++;

}

}

AN-1023 Application Note

Rev. 0 | Page 20 of 28

xl345.h
/*--

 The present firmware, which is for guidance only, aims at providing

 customers with coding information regarding their products in order

 for them to save time. As a result, Analog Devices shall not be

 held liable for any direct, indirect, or consequential damages with

 respect to any claims arising from the content of such firmware and/or

 the use made by customers of the coding information contained herein

 in connection with their products.

--*/

#ifndef __XL345_H

#define __XL345_H

/* --- I2C addresses --- */

/* The primary slave address is used when the SDO pin is tied or pulled

 high. The alternate address is selected when the SDO pin is tied or

 pulled low. When building the hardware, if you intend to use I2C,

 the state of the SDO pin must be set. The SDO pin is also used for

 SPI communication. To save system power, there is no internal pull-up

 or pull-down. */

#define XL345_SLAVE_ADDR 0x1d

#define XL345_ALT_ADDR 0x53

/* additional I2C defines for communications functions that need the

 address shifted with the read/write bit appended */

#define XL345_SLAVE_READ XL345_SLAVE_ADDR << 1 | 0x01

#define XL345_SLAVE_WRITE XL345_SLAVE_ADDR << 1 | 0x00

#define XL345_ALT_READ XL345_ALT_ADDR << 1 | 0x01

#define XL345_ALT_WRITE XL345_ALT_ADDR << 1 | 0x00

/* ------- Register names ------- */

#define XL345_DEVID 0x00

#define XL345_RESERVED1 0x01

#define XL345_THRESH_TAP 0x1d

#define XL345_OFSX 0x1e

#define XL345_OFSY 0x1f

#define XL345_OFSZ 0x20

#define XL345_DUR 0x21

#define XL345_LATENT 0x22

#define XL345_WINDOW 0x23

#define XL345_THRESH_ACT 0x24

#define XL345_THRESH_INACT 0x25

#define XL345_TIME_INACT 0x26

#define XL345_ACT_INACT_CTL 0x27

#define XL345_THRESH_FF 0x28

#define XL345_TIME_FF 0x29

#define XL345_TAP_AXES 0x2a

#define XL345_ACT_TAP_STATUS 0x2b

#define XL345_BW_RATE 0x2c

#define XL345_POWER_CTL 0x2d

#define XL345_INT_ENABLE 0x2e

Application Note AN-1023

Rev. 0 | Page 21 of 28

#define XL345_INT_MAP 0x2f

#define XL345_INT_SOURCE 0x30

#define XL345_DATA_FORMAT 0x31

#define XL345_DATAX0 0x32

#define XL345_DATAX1 0x33

#define XL345_DATAY0 0x34

#define XL345_DATAY1 0x35

#define XL345_DATAZ0 0x36

#define XL345_DATAZ1 0x37

#define XL345_FIFO_CTL 0x38

#define XL345_FIFO_STATUS 0x39

/*--

 Bit field definitions and register values

 --*/

//#define XL345_

/* register values for DEVID */

/* The device ID should always read this value, The customer does not

 need to use this value but it can be read to check that the

 device can communicate */

#define XL345_ID 0xe5

/* Reserved soft reset value */

#define XL345_SOFT_RESET 0x52

/* Registers THRESH_TAP through TIME_INACT take only 8-bit values

 There are no specific bit fields in these registers */

/* Bit values in ACT_INACT_CTL */

#define XL345_INACT_Z_ENABLE 0x01

#define XL345_INACT_Z_DISABLE 0x00

#define XL345_INACT_Y_ENABLE 0x02

#define XL345_INACT_Y_DISABLE 0x00

#define XL345_INACT_X_ENABLE 0x04

#define XL345_INACT_X_DISABLE 0x00

#define XL345_INACT_AC 0x08

#define XL345_INACT_DC 0x00

#define XL345_ACT_Z_ENABLE 0x10

#define XL345_ACT_Z_DISABLE 0x00

#define XL345_ACT_Y_ENABLE 0x20

#define XL345_ACT_Y_DISABLE 0x00

#define XL345_ACT_X_ENABLE 0x40

#define XL345_ACT_X_DISABLE 0x00

#define XL345_ACT_AC 0x80

#define XL345_ACT_DC 0x00

/* Registers THRESH_FF and TIME_FF take only 8-bit values

 There are no specific bit fields in these registers */

/* Bit values in TAP_AXES */

AN-1023 Application Note

Rev. 0 | Page 22 of 28

#define XL345_TAP_Z_ENABLE 0x01

#define XL345_TAP_Z_DISABLE 0x00

#define XL345_TAP_Y_ENABLE 0x02

#define XL345_TAP_Y_DISABLE 0x00

#define XL345_TAP_X_ENABLE 0x04

#define XL345_TAP_X_DISABLE 0x00

#define XL345_TAP_SUPPRESS 0x08

/* Bit values in ACT_TAP_STATUS */

#define XL345_TAP_Z_SOURCE 0x01

#define XL345_TAP_Y_SOURCE 0x02

#define XL345_TAP_X_SOURCE 0x04

#define XL345_STAT_ASLEEP 0x08

#define XL345_ACT_Z_SOURCE 0x10

#define XL345_ACT_Y_SOURCE 0x20

#define XL345_ACT_X_SOURCE 0x40

/* Bit values in BW_RATE */

/* Expresed as output data rate */

#define XL345_RATE_3200 0x0f

#define XL345_RATE_1600 0x0e

#define XL345_RATE_800 0x0d

#define XL345_RATE_400 0x0c

#define XL345_RATE_200 0x0b

#define XL345_RATE_100 0x0a

#define XL345_RATE_50 0x09

#define XL345_RATE_25 0x08

#define XL345_RATE_12_5 0x07

#define XL345_RATE_6_25 0x06

#define XL345_RATE_3_125 0x05

#define XL345_RATE_1_563 0x04

#define XL345_RATE__782 0x03

#define XL345_RATE__39 0x02

#define XL345_RATE__195 0x01

#define XL345_RATE__098 0x00

/* Expressed as output bandwidth */

/* Use either the bandwidth or rate code,

 whichever is more appropriate for your application */

#define XL345_BW_1600 0x0f

#define XL345_BW_800 0x0e

#define XL345_BW_400 0x0d

#define XL345_BW_200 0x0c

#define XL345_BW_100 0x0b

#define XL345_BW_50 0x0a

#define XL345_BW_25 0x09

#define XL345_BW_12_5 0x08

#define XL345_BW_6_25 0x07

#define XL345_BW_3_125 0x06

#define XL345_BW_1_563 0x05

#define XL345_BW__782 0x04

Application Note AN-1023

Rev. 0 | Page 23 of 28

#define XL345_BW__39 0x03

#define XL345_BW__195 0x02

#define XL345_BW__098 0x01

#define XL345_BW__048 0x00

#define XL345_LOW_POWER 0x08

#define XL345_LOW_NOISE 0x00

/* Bit values in POWER_CTL */

#define XL345_WAKEUP_8HZ 0x00

#define XL345_WAKEUP_4HZ 0x01

#define XL345_WAKEUP_2HZ 0x02

#define XL345_WAKEUP_1HZ 0x03

#define XL345_SLEEP 0x04

#define XL345_MEASURE 0x08

#define XL345_STANDBY 0x00

#define XL345_AUTO_SLEEP 0x10

#define XL345_ACT_INACT_SERIAL 0x20

#define XL345_ACT_INACT_CONCURRENT 0x00

/* Bit values in INT_ENABLE, INT_MAP, and INT_SOURCE are identical.

 Use these bit values to read or write any of these registers. */

#define XL345_OVERRUN 0x01

#define XL345_WATERMARK 0x02

#define XL345_FREEFALL 0x04

#define XL345_INACTIVITY 0x08

#define XL345_ACTIVITY 0x10

#define XL345_DOUBLETAP 0x20

#define XL345_SINGLETAP 0x40

#define XL345_DATAREADY 0x80

/* Bit values in DATA_FORMAT */

/* Register values read in DATAX0 through DATAZ1 are dependent on the

 value specified in data format. Customer code will need to interpret

 the data as desired. */

#define XL345_RANGE_2G 0x00

#define XL345_RANGE_4G 0x01

#define XL345_RANGE_8G 0x02

#define XL345_RANGE_16G 0x03

#define XL345_DATA_JUST_RIGHT 0x00

#define XL345_DATA_JUST_LEFT 0x04

#define XL345_10BIT 0x00

#define XL345_FULL_RESOLUTION 0x08

#define XL345_INT_LOW 0x20

#define XL345_INT_HIGH 0x00

#define XL345_SPI3WIRE 0x40

#define XL345_SPI4WIRE 0x00

#define XL345_SELFTEST 0x80

/* Bit values in FIFO_CTL */

/* The low bits are a value 0 to 31 used for the watermark or the number

AN-1023 Application Note

Rev. 0 | Page 24 of 28

 of pre-trigger samples when in triggered mode */

#define XL345_TRIGGER_INT1 0x00

#define XL345_TRIGGER_INT2 0x20

#define XL345_FIFO_MODE_BYPASS 0x00

#define XL345_FIFO_RESET 0x00

#define XL345_FIFO_MODE_FIFO 0x40

#define XL345_FIFO_MODE_STREAM 0x80

#define XL345_FIFO_MODE_TRIGGER 0xc0

/* Bit values in FIFO_STATUS */

/* The low bits are a value 0 to 32 showing the number of entries

 currently available in the FIFO buffer */

#define XL345_FIFO_TRIGGERED 0x80

#endif /* __XL345_H */

Application Note AN-1023

Rev. 0 | Page 25 of 28

xl345_io.h
/*--

 The present firmware, which is for guidance only, aims at providing

 customers with coding information regarding their products in order

 for them to save time. As a result, Analog Devices shall not be

 held liable for any direct, indirect, or consequential damages with

 respect to any claims arising from the content of such firmware and/or

 the use made by customers of the coding information contained herein

 in connection with their products.

--*/

#ifndef __XL345_IO_H

#define __XL345_IO_H

#include "XL345.h"

/* Wrapper functions for reading and writing bursts to / from the ADXL345

 These can use I2C or SPI. Will need to be modified for your hardware

*/

/*

 The read function takes a byte count, a register address, and a

 pointer to the buffer where to return the data. When the read

function runs in I2C as an example, it goes through the following

 sequence:

 1) I2C start

 2) Send the correct I2C slave address + write

 3) Send the register address

 4) I2C stop

 6) I2C start

 7) Send the correct I2C slave address + read

 8) I2C read for each byte but the last one + ACK

 9) I2C read for the last byte + NACK

 10) I2C stop

*/

void xl345Read(unsigned char count, unsigned char regaddr, unsigned char *buf);

/*

 The write function takes a byte count and a pointer to the buffer

 with the data. The first byte of the data should be the start

 register address, the remaining bytes will be written starting at

 that register. The minimum byte count that should be passed is 2,

 one byte of address, followed by a byte of data. Multiple

 sequential registers can be written with longer byte counts. When

 the write function runs in I2C as an example, it goes through the

 following sequence:

 1) I2C start

 2) Send the correct I2C slave address + write

 3) Send the number of bytes requested form the buffer

 4) I2C stop

*/

void xl345Write(unsigned char count, unsigned char regaddr, unsigned char *buf);

#endif

AN-1023 Application Note

Rev. 0 | Page 26 of 28

CONCLUSION
The ADXL345 is a powerful and full-featured accelerometer
from Analog Devices. This application note takes advantage of
the various built-in motion status detection features and flexible
interrupts to propose a new solution for fall detection. This

solution is realized through full use of the ADXL345 hardware
interrupts and has been tested to feature low algorithm
complexity with high detection accuracy.

REFERENCES
ADXL345 Data Sheet. Analog Devices, Inc. 2009.

http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�
http://www.analog.com/ADXL345�

Application Note AN-1023

Rev. 0 | Page 27 of 28

NOTES

AN-1023 Application Note

Rev. 0 | Page 28 of 28

NOTES

©2009 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN08185-0-6/09(0)

	Introduction
	ADXL345 MEMS Accelerometer
	Interrupts
	DATA_READY
	SINGLE_TAP
	DOUBLE_TAP
	Activity
	Inactivity
	FREE_FALL
	Watermark
	Overrun

	Acceleration Change Characteristics during the Fall Process
	Weightlessness
	Impact
	Motionless
	Initial Status

	Typical Circuit Connection of the System
	Using the ADXL345 to Simplify Fall Detection Algorithms
	Example Code
	FallDetection.c
	FallDetection.h
	ADuC7026Driver.h
	xl345.h
	xl345_io.h

	Conclusion
	References

