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Editors’ Notes
40 YEARS OF REAL WORLD SIGNAL PROCESSING
Forty years ago, Ray Stata and Matt Lorber 
opened the doors of Analog Devices for 
business, offering a line of high-performance 
operational amplifiers. We’ve survived and 
prospered beyond their fondest expectations, 
and are still rarin’ to go. In celebration of 
that anniversary, Analog Dialogue’s four print 
installments will each be devoted to one of our 
major technologies. We start with digital signal 
processing (DSP).

ANALOG SIGNAL PROCESSING GOES DIGITAL
In 1986, a new—and apparently unlikely—contender entered the young 
field of digital-signal-processor manufacturing—then dominated by TI, 
the colossus of “Speak & Spell,”—with a single-chip DSP, our ADSP-2100. 
As we celebrate our 40th year in the business of components for signal 
processing, it seems worthwhile to reproduce here our editorial comments 
that accompanied the introduction of the first Analog Devices DSP in these 
pages (Analog Dialogue 20-2, 1986):

“Microprocessor?” we hear you ask. “Isn’t it a bit unseemly for a nice 
‘Analog’ IC company to be designing a microprocessor? (What could 
be more digital ?)”

Good question.

Our objective has always been to design and manufacture cost-effective 
components that are key elements of the signal path for processing real-
world (i.e., analog) data and for which performance is maximized and 
errors minimized.

The signal path? Real-world data almost always starts out as analog 
(i.e., parallel, non-numeric) variables, which are measured by sensors 
that provide analog electrical signals—voltage and current. The signals 
must be accurately and speedily amplified, conditioned (almost always in 
parallel) and converted to digital for processing. Once in digital form, they 
must be processed rapidly. Often they again wind up as analog signals.

Key elements of the signal path may include preamplifiers, analog 
signal processors, data converters—to and from digital—and, when 
the signal is in digital form, a digital processor. Inadequacy in any one 
of the key elements—amplifier, analog processor, data converter, or 
microprocessor—can cause poor performance of the overall system.

Obstacles in the signal path include noise, drift, nonlinearity, and 
measurement lag at the analog stages, similar obstacles in conversion—
and throughput delays in digital processing, often because of the lack of 
parallelism in von Neumann architectures.

Throughout our history, ADI’s role in the signal path has been to initiate 
new products (or product lines) when dissatisfied with the performance 
and cost-effectiveness of what’s available (which is often limited to user-
assembled kludges, when nothing else is available). At this point in time, 
we (and our worthy competitors) have virtually eliminated the user-
assembled amplifier, signal conditioner, and data converter, by designing 
and marketing families of high-performance, cost-effective products.

We have always been dissatisfied with the cost, power dissipation, and 
slow throughput in the digital domain; this concern led to our pioneering 
development of CMOS multipliers and other digital signal-processing 
ICs (note that because we were already familiar with analog multipliers, 
digital multipliers became just another analog signal-processing tool). 
Note also our commitment to signal processing—not payroll, desktop 
publishing, or order-handling products). 

www.analog.com/analogdialogue dialogue.editor@analog.com
Analog Dialogue is the free technical magazine of Analog Devices, Inc., published 
continuously for 39 years—starting in 1967. It discusses products, applications, 
technology, and techniques for analog, digital, and mixed-signal processing. It is 
currently published in two editions—online, monthly at the above URL, and quarterly 
in print, as periodic retrospective collections of articles that have appeared online. In 
addition to technical articles, the online edition has timely announcements, linking to 
data sheets of newly released and pre-release products, and “Potpourri”—a universe 
of links to important and rapidly proliferating sources of relevant information and 
activity on the Analog Devices website and elsewhere. The Analog Dialogue site is, 
in effect, a “high-pass-filtered” point of entry to the www.analog.com site—the 
virtual world of Analog Devices. In addition to all its current information, the 
Analog Dialogue site has archives with all recent editions, starting from Volume 29, 
Number 2 (1995), plus three special anniversary issues, containing useful articles 
extracted from earlier editions, going all the way back to Volume 1, Number 1. 

If you wish to subscribe to—or receive copies of—the print edition, please go to 
www.analog.com/analogdialogue and click on <subscribe>. Your comments 
are always welcome; please send messages to dialogue.editor@analog.com 
or to these individuals: Dan Sheingold, Editor [dan.sheingold@analog.com] 
or Scott Wayne, Managing Editor and Publisher [scott.wayne@analog.com].

And our dissatisfaction with insufficient throughput in DSP processors 
led to the design of the ADSP-2100, which stresses the use of that analog 
characteristic, parallelism, to minimize instruction cycles, whether in 
processing, data transfer, or interrupt handling. It’s neat! We invite you 
to read about it. 

Since that time, such names as SHARC®, TigerSHARC®, Blackfin®, 
EZ Kit, and VisualDSP++ ® have become household words, as they 
remove barriers whenever DSPs are considered. 

Dan Sheingold [dan.sheingold@analog.com]

FROM NUMBER CRUNCHING TO MULTIMEDIA 
In the early days of digital signal processing, 
the ADSP-2100 single-chip microprocessor 
was typically used for applications that required 
high-speed numeric processing. Integrating 
a 16-bit arithmetic-logic unit (ALU), 16-bit 
multiplier-accumulator (MAC), 16-bit shifter, 
two data-address generators, and a program 
sequencer, it used external memory for program 
and data storage. Operating at 8 MHz, it dissipated 
600 mW. In a single clock cycle it could: generate the 
next program address; fetch the next instruction; 
perform one or two data moves; update one or 
two data address pointers; and perform a computational operation. 

Over the intervening twenty years, digital signal processors have gotten 
smaller, faster, less expensive, more powerful, and more efficient—and 
they integrate up to 24 Mbits of on-chip memory. Even more important, 
perhaps, are the host of peripherals that can be found on modern embedded 
processors. The ADSP-BF537 Blackfin processor, for example, includes 
an IEEE 802.3-compliant 10/100 Ethernet medium access controller, 
Controller Area Network (CAN) 2.0B interface, parallel peripheral 
interface (PPI) supporting ITU-R 656 video data formats, and dual-
channel, full-duplex synchronous ports (SPORT) supporting eight 
stereo I2S channels. The ADSP-21367 SHARC processor’s digital audio 
interface (DAI) includes an S/PDIF digital audio receiver/transmitter, 
8-channel sample-rate converter, sixteen pulse-width modulators, four 
PLL clock generators, eight serial ports, and ROM-based audio decoder 
and post-processor algorithms. The ADSP-TS201 TigerSHARC processor 
includes an 8-Gbps 64-bit external port, 14-channel direct memory-access 
(DMA) controller, and four 8-Gbps bidirectional link ports. Together they 
provide unparalleled interface capabilities without the use of any additional 
external glue logic.

Processing power and peripherals have created opportunities for digital 
signal processors in diverse applications—including professional audio 
mixing consoles, always-on cell-phone coverage, home-theater surround 
sound, fingerprint recognition, network music players, wireless video, 
satellite radio, and 3D motion tracking. Some of these are described 
below. Details about these applications and many more can be found at 
http://www.analog.com/processors/news/customerstories. 

The TigerSHARC processor is the only processor capable of implementing 
a software-defined digital baseband for 3G base stations, allowing the 
same platform to be easily adapted for use in multiple regions—and to be 
easily upgraded to support new capabilities. The TigerSHARC processor 
is also the first to implement an all-software physical layer for IEEE 802.16 
WiMAX broadband wireless modems. Its best-in-class I/O bandwidth and 
scalable architecture allow OEMs to differentiate their products through 
advanced techniques, such as smart antennas using space-time coding and 
adaptive beam-forming. 

The 32-bit floating-point SHARC processor has the necessary speed and 
efficiency to handle the complex post-processing algorithms required to 
deliver 6.1 discrete channels of surround sound from any audio material, 
allowing listeners to take full advantage of their home-theater speaker 
systems, even when listening to VHS tapes, FM radio broadcasts, or 
stereo music CDs. The SHARC processor’s digital audio interface, large 
memory array, and VisualDSP++ graphical system design and development 
environment combine to allow manufacturers to base multiple products 
with various I/O requirements on a single hardware design, fully leveraging 
their design time and development costs.

Blackfin processors provide both control functions and multimedia 
processing capabilities, enabling diversity receivers to operate in harsh 
weather and low light conditions. Providing fast information transfer, 
these receivers allow soldiers, police officers, and firefighters in the 
field to exchange audio, video, and data from sources such as cameras, 
microphones, and global-positioning systems (GPS)—increasing personnel 
safety in environments that are subject to high levels of interference. The low 
power consumption and dynamic power management inherent in Blackfin 
processors is crucial for their successful use in compact, portable, battery-
powered equipment.

Scott  Wayne [scott.wayne@analog.com]

mailto:dan.sheingold@analog.com
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Figure 1. Circuit diagram of the modem.

A Smart Modem for Robust Wireless 
Data Transmission Over ISM Bands 
(433 MHz, 868 MHz, and 902 MHz)
By Patrick Butler [patrick.butler@analog.com]
Austin Harney [austin.harney@analog.com]

In the last few years, radio-frequency technology has advanced 
by leaps and bounds, resulting in a phenomenal number of new 
wireless applications. Most of these applications—Bluetooth®,1 
WLAN 802.11b,2 and cordless telephones, for example—are 
appearing alongside the microwave oven in the license-free UHF 
band at 2.4 GHz. Because of the heavy traffic in the 2.4-GHz 
band, and its associated co-existence issues, interest has increased 
in the ISM (industrial, scientific, medical) UHF bands—available 
at the lower frequencies of 868 MHz and 433 MHz in Europe, 
and 902 MHz to 928 MHz in the United States. 

Unlike at 2.4 GHz, however, there is no common global standard 
for the lower-UHF bands; this means that a manufacturer’s system 
would have to be adaptable to each region’s regulations. However, 
this burden has been eased considerably by the introduction of 
flexible ISM-band transceivers, such as the ADF7020,3 which 
allow operation from 433 MHz to 960 MHz. 

Unfortunately, one cannot entirely eliminate the problem of 
interference and co-existence by simply switching to these lower-
UHF bands. As might be expected, there are plenty of legacy 
systems already operating in these bands. In wireless systems, 
data will be corrupted if an interferer collides with the wanted 
signal—resulting in an insufficient signal-to-noise ratio (SNR) 
at the receiver. A traditional way of dealing with this problem is to 
use some sort of error-detection technique, e.g., cyclic redundancy 
checking (CRC). CRC can detect this corruption to a certain extent 
and trigger the retransmission of erroneous packets (this is usually 
called automatic repeat request, ARQ), but at the cost of considerable 
delay and loss of performance in real-time applications. 

This need to retransmit corrupted packets is not particularly 
onerous for a low-throughput system—one that sends a burst of 
data from a remote sensor once every few minutes, for example. 
But it does become a problem for applications such as wireless 
audio or video transmission, with their higher data rates, 
since the latency introduced by ARQ might be unacceptable. 
It also introduces problems in industrial process-control and 
telemetry systems, which must maintain throughput in a noisy 
environment without the need for many retransmissions. Such 
longer associated transmission times also increase the overall 
system power consumption.

A powerful solution to this dilemma lies in the use of forward 
error-correction (FEC) techniques, able to detect and correct 
errors over a large enough number of bits to compensate for 
partial packet loss and ensure service quality. A low-cost, yet 
powerful, processor such as the Blackfin®4 ADSP-BF5315 can 
be used to implement intensive error-correction techniques 
requiring millions of instructions per second (MIPS)—convolutional 
coding with bit-scrambling and interleaving, for example—to 
deliver a data rate of over 100 kbps with a transmission error 
rate of less than 10–6. 

When used in conjunction with the ADF7020 ISM-band transceiver 
IC, with its typical range of several hundred meters (line of sight), 
this approach provides a robust solution for designers wanting to 
replace their current wire-line solutions without compromising 
quality of service. Thanks to its 400-MIPS (million instruction-per-
second) and 800-MMACS (million multiply-accumulate-per-second) 
capabilities, the ADSP-BF531 can also accommodate protocols to 
support various wireless configurations and topologies, including 
point-to-point, multi-point, and broadcast, as well as sophisticated 
encryption and source coding and decoding algorithms such as 
Motion JPEG (MJPEG).

Figure 1 is a detailed circuit diagram of a wireless digital modem 
built around the ADF7020 ISM-band transceiver and its 
companion controller, the ADSP-BF531. The two main chips share 
the same power supply voltage (2.3 V<VCC<3.6 V), and they are 

mailto:patrick.butler@analog.com
mailto:austin.harney@analog.com
http://www.bluetooth.com/
http://grouper.ieee.org/groups/802/11/main.html
http://www.analog.com/en/prod/0%2C2877%2CADF7020%2C00.html
http://www.analog.com/processors/processors/blackfin/index.html
http://www.analog.com/en/prod/0%2C2877%2CADSP-BF531%2C00.html
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directly connected for control operations, using the ADSP-BF531 
flags (digital I/Os) and transmit/receive operations, using one of 
the serial synchronous ports (SPORT0). 

Data will be transmitted to—or received from—the modem, 
either asynchronously over the UART or synchronously with the 
remaining SPORT. 

A Versatile Transceiver
The ADF7020 is a complete monolithic radio transceiver 
built using 0.25 - m CMOS technology. It is capable of 
operating in the 433 -MHz and 868 -MHz European ISM 
bands (ETSI EN300 220-1 standard),6 and the North American 
902-to-928-MHz band—covered by FCC Part 15 regulations.7 
Requiring few external components and offering a high degree 
of flexibility, it allows the user to configure the part for specific 
applications. For example, there is a choice among different 
modulation schemes, such as FSK, GFSK, ASK, and OOK. The 
user can also trade off between sensitivity and selectivity—a useful 
approach for systems that have tough linearity requirements. The 
maximum data rate for the ADF7020 is 200 kbps; its sister part, 
the ADF7025,8 has an even greater data rate: 384 kbps.

Like most recent ISM-band transceivers, the ADF7020 utilizes a 
fractional-N phase-locked-loop (PLL) synthesizer, which allows 
the selection of the channels at 433 MHz, plus any channel 
between 868 MHz and 928 MHz, with a resolution better than 
1 kHz. This frequency agility allows the ADF7020 to be used in 
frequency-hopping systems—as specified in the US FCC Part 15 

regulations—but it is also possible to operate on a single channel 
in the US band if the output power is below –1.5 dBm.

The high-resolution fractional-N synthesizer also forms part of a 
novel automatic frequency-control (AFC) loop, which compensates 
for incoming frequency errors and allows lower-tolerance, less-
expensive, crystals to be used. The block diagram of the ADF7020 
is shown in Figure 2. The PLL loop filter components can be 
determined with the help of the ADIsimPLL9 simulation software, 
available on the Analog Devices website.

Forward Error-Correction with the Blackfin Processor 
While the use of a really high-performance processor in 
conjunction with a radio is common in digital cellular systems, it 
might at first glance seem inappropriate for meeting the goal of a 
low-cost digital modem. Implementing FEC operations at several 
hundred kilobits per second, however, requires computationally 
intensive digital signal-processing power comparable to that 
provided by the Blackfin ADSP-BF531. While a standard 8051 or 
ARM-based microcontroller, for example, can adequately handle 
the user interface, protocol stack, RF transceiver supervision, 
and power sequencing, it would not have the computation 
“horsepower” required for the FEC scheme. In addition to 
implementing the control functions, the computing power and 
real-time capabilities of the ADSP-BF531 allow it to: increase 
the effective channel data rate, reduce communication latency, 
compensate for channel propagation variations to maintain link 
quality, and ensure communication security.
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Figure 2. Functional block diagram of the ADF7020.

http://www.linxtechnologies.com/documents/EN300220-1_2000.pdf
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Figure 3 illustrates the various functions to be carried out across 
the transmission channel, including processing functions handled 
for both transmit (Tx) and receive (Rx) operations. The Blackfin 
processor, when sitting on the transmitter side handles both 
data-rate control and data partitioning, so data is transmitted in 
packets at a quasi-constant rate. The data packets are processed 
for forward error-correction (FEC) before they modulate the 
carrier’s frequency. This is achieved by adding redundant bits 
that the receiver will use to detect and correct errors. The bits 
added to the incoming packets will, of course, increase the required 
bandwidth for a given information bit rate. 

Among the different applicable methods of FEC, convolutional 
coding, while quite simple to implement, gives good protection 
against channel Gaussian noise disturbances and helps meet 
minimum Hamming-distance criteria. A convolutional encoder 
is a finite state-machine comprising an L-stage shift register, 
N modulo-2 adders, and a multiplexer to convert the output into 
a serial bit stream. The connections between the shifter outputs 
and the adder inputs determine the polynomial code. Using two 
specifically applicable instructions, the Blackfin core performs all 
these operations very efficiently. 

At the other end of the transmission channel, the decoder section 
implements the Viterbi algorithm (hard-input/hard-output). For 
maximum likelihood decoding, the Viterbi decoder compares all 
the possible code sequences to the received code vector. The code 
sequence whose Hamming distance from the received sequence 
is the shortest is the good one. For a code like (1/2, 7, 371, 247) 
with a constraint length, K = L + 1 of 7, the decoder can correct 
up to six consecutive erroneous bits. Depending upon the system 
requirements, constraint lengths (K) from 5 to 9 must be supported 
by the ADSP-BF531 in such wireless applications. 

However, even a convolutional code with a constraint length of 9 
does not protect against burst noise that might hit the transmitted 
packets over a longer length of time. The use of a complementary 
protection technique based on temporal diversity is mandatory. 
Temporal diversity, i.e., spreading the bits or symbols out over time, 
improves the performance of a coded communication system in the 
presence of multiple paths, fading, and burst noise. It thus reduces 
the probability of a consecutive number of bits being corrupted. 
Scrambling and simple block interleaving functions achieve this 
objective without employing more complex corrective codes (like 
Reed-Solomon). Here again, the ADSP-BF531 is helpful with 
two specific vector instructions—one that computes the Viterbi 
trellis butterflies and one that reconstructs data for the path-search 
(trace-back) operation. 
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Figure 3. Signal-processing functions.

This encoded data is then passed on to the ADF7020 
transmitter section, which does some additional filtering and 
Gaussian frequency-shift-keying (GFSK) modulation. GFSK 
modulation has the advantage of reducing the occupied spectral 
bandwidth—a helpful operation when seeking to meet adjacent-
channel requirements for the European 868-MHz bands. 

On the receiver side, the ADF7020’s internal preamble-matching 
circuitry helps to fulfill the critical packet-synchronization 
task. This hardware function permits the recognition or 
identification of a 12-, 16-, 20-, or 24-bit-long programmable 
synchronization word, or a packet preamble, without the 
intervention of the ADSP-BF531 core. Upon a valid preamble 
match, the circuitry asserts the ADF7020 INT/LOCK pin, 
which signals the beginning of a new packet to the serial port 
(RFS0) and triggers the Viterbi decoder. This unique circuitry 
is somewhat error-tolerant—in a sense, it even allows a valid 
match for up to three incorrect bits. This reduces the number 
of packets lost due to preamble misses, as the preamble is not 
encoded and is therefore not protected. To further reduce 
preamble misses, the receiver uses one of the ADSP-BF531 
32-bit timers as a watchdog that generates the expected pulse 
on RFS0 if the INT/LOCK signal does not show up after a 
few symbols. This use of a hardware mechanism to retrieve 
packet synchronization markers was chosen in order to save 
a lot of processor MIPS—compared to a full implementation 
with software analysis and tracking. 

Real-World Application—Wireless Video Over ISM
As noted earlier, efficient wireless digital-video transmission 
calls for robustness against channel failures. Video codecs 
are excellent candidates for applications with smart, reliable 
Blackf in processor - based wireless modems. Given the 
limitation of the ISM wireless channel bandwidth, a relatively 
high image/video compression ratio is required in order to 
deliver the expected frame rate and quality for a given image 
size without too much latency. Unfortunately, Motion JPEG 
and other video codecs require a very low transmission-error 
rate, typically 10–6, because the source-coding process removes 
most of the redundant information. This is particularly true 
with some efficient entropy coders, such as Huffman, where 
a single erroneous bit makes the original data impossible 
to decode. A required bit- error rate (BER) less than 10–6 
places very stringent requirements on the radio, but it can 
be achieved by using a channel coding scheme like the one 
described above. 
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A very low BER does not ensure that all the data packets will be 
entropy-decoded correctly. To improve the image quality, it is 
necessary to provide some mechanism to conceal part of an image 
if too many important bits in a packet are corrupted. For this 
purpose, every packet is segmented and entropy-coded separately. 
After the detection of an erroneous segment or block, its content is 
discarded. Depending upon the information lost, the dc and first 
two ac coefficients of the discrete cosine transform (DCT) of the 
corresponding image block are estimated from the coefficients of 
the neighboring blocks. The final low-pass 2D 3  3 de-blocking 
filter stage, designed to remove DCT blocking artifacts, helps to 
smooth resulting distortion.

The ADSP-BF531 has more than enough power to handle 
both the MJPEG encoding or decoding and the channel FEC 
processing. No external memory is required for frame sizes up to 
QCIF (176 pixels by 144 pixels) with a 4:2:2 video format. Larger 
frames are possible at the cost of an external SDRAM, which 
can also be used to store compressed video. This very low-cost 
processor can interface directly to CCIR-656-compatible low-cost 
CMOS image sensors or TFT displays via its parallel peripheral 
interface (see “Blackfin Processor’s Parallel Peripheral Interface 
Simplifies LCD Connection in Portable Multimedia”).10 Standard 
low-cost, low-power PCM audio codecs can be connected to the 
available serial port, SPORT1, to support digital transmission 
of speech or audio. Or, the processor can provide speech coding 
and decoding with moderate delay by executing a software codec 
similar to the FR-GSM (13 kbps).

With a raw data rate of 200 kbps it is possible to achieve “baseline” 
MJPEG transmission over ISM at a rate of about four QCIF 
4:2:2 color-frames per second (fps), while leaving 20 kbps 
for speech. This is acceptable for simple low-cost consumer 
appliances, such as video baby monitors, video door phones, or 
wireless home-security cameras. The functional block diagram 
of such a point-to-point video transmission system (baby monitor) 
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is shown in Figure 4. The overall bill of materials (BOM) for this 
application is in the $75 range; and the 2.5” LCD TFT display 
is the most expensive part.

The application code corresponding to the system block 
diagram shown at Figure 4 is available from Arbos Ingénierie 
(www.arbos-dsp.com),11 a French DSP third-party partner of 
Analog Devices. 

CONCLUSION
The unique combination of the ADF7020 ISM-band transceiver 
and the ADSP-BF531 Blackfin processor exhibits excellent radio-
link performance at a very attractive cost, with demonstrable 
versatility in various ISM digital wireless transmission systems. 
Further improvements to this communications model can 
be anticipated with future members of the ADF702x RF 
transceiver family and new TCP/IP friendly Blackfin DSP 
processors, together with additional channel- and source-coding 
software modules. b
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Blackfin® Processor’s Parallel 
Peripheral Interface Simplifies LCD 
Connection in Portable Multimedia
By David Katz [david.katz@analog.com]
Ching Lam [ching.lam@analog.com]
Rick Gentile [richard.gentile@analog.com]

As low-power, fixed-point processors such as ADI’s Blackfin1 
family increase in performance and popularity, they can serve more 
and more multimedia applications. Many of these applications 
require small, low-power liquid-crystal-display (LCD) panels that 
have, in general, lower video resolutions than the full NTSC/PAL 
video used for broadcast TV. These panels are usually controlled 
either by a microcontroller or a dedicated LCD controller chip. But 
today, Blackfin processors have sufficient performance to handle 
both signal processing and control functions, and also to interface 
directly to the LCD displays—considerably reducing system cost 
and complexity. This article will discuss how the ADSP-BF5612 
Blackfin processor’s parallel peripheral interface3 (PPI) integrates 
LCD display capability into the world of high-performance media 
processing, allowing a single processor to be used for both system 
processing and display driving.

Passive vs. Active
There are two major categories of LCD array technology—
passive -matrix and active -matrix. 

In the former, a glass substrate imprinted with rows forms a 
liquid-crystal sandwich with a substrate imprinted with columns. 
Pixels are defined at row-column intersections. To activate a given 
pixel, a timing circuit energizes the pixel’s column while grounding 
its row. The resulting voltage differential renders the liquid crystal 
opaque in the vicinity of that pixel location, blocking light from 
coming through. 

Although it is straightforward, passive matrix technology does have 
some shortcomings. For one, screen refresh times are relatively 
slow (which can result in ghosting for fast-moving images). 
Also, there is a tendency for the voltage field at a row-column 
intersection to bleed over into neighboring pixels, partly untwisting 
the liquid crystals and blocking some light from passing through 
the surrounding pixel area. The effect is to blur edges in the image 
and reduce contrast. 

Active-matrix LCD technology, using an IC-like manufacturing 
process, is a considerable improvement. Each pixel has a capacitor, 
to retain charge between refresh cycles, and a transistor switch 
(giving rise to the popular term, thin-film-transistor—TFT—
display). To address a particular pixel, its row is enabled, and a 
voltage is applied to its column. This has the effect of isolating only 
the pixel of interest, so others in the vicinity are not influenced. 
The current drawn in controlling a given pixel is reduced, so pixels 
can be switched at a faster rate, leading to faster refresh rates for 
TFTs compared to passive displays. What’s more, modulating 
the voltage level applied to the pixel allows many discrete levels of 
brightness. Today, it is common to have 256 levels, corresponding 
to 8 bits of intensity. 

For color displays, each pixel actually has three subpixels—with 
red, green, and blue (R-G-B) filters—that the human eye sees 
as a single-color spot. For example, a 320  240 pixel display 
actually has 960  240 subpixels, accounting for the R, G, and B 
components. Each subpixel has 8 bits of intensity, thus forming 
the basis of the common 24-bit color LCD display. 

Since LCD technology relies on regulating the passage of light 
at the pixel level, one might wonder where the light would be 
generated. Many small, low-cost monochrome LCDs are reflective, 
meaning that external light reflects off the substrates but is blocked 
in areas where a liquid crystal segment is charged. 

Since TFT color displays have millions of transistors that filter 
the incoming light, reflective displays would not be effective in 
active-matrix technology. Instead, the displays are backlit (or 
transmissive); typically a fluorescent light—or a white light-emitting-
diode (LED) array, integrated into the display—generates light that 
is modulated as it is transmitted through the various layers of the 
LCD “sandwich.” Unfortunately, the large surface area consumed 
by the transistors necessitates a greater light output from the 
backlight. In addition, each transistor of a TFT display 
dissipates power, so active -matrix displays are somewhat 
power-hungry compared with their passive cousins. 

Components of a TFT-LCD System
Connecting to a TFT-LCD panel can seem complicated, 
considering all of the different components involved. First, 
there’s the panel itself, which houses an array of pixels arranged 
for strobing by row and column at high speed, referenced to the 
pixel-clock frequency. 

The backlight is often a cold-cathode fluorescent lamp (CCFL). In 
a CCFL, excited gas molecules emit bright light while generating 
very little heat. This low dissipation, plus their durability, long life, 
and straightforward drive requirements, make them ideal for LCD 
panel applications. As mentioned above, LEDs are also a popular 
backlight method, mainly for small- to mid-sized panels. They 
have the advantages of low cost, low operating voltage, long life, and 
good intensity control. However, in larger panels, LED backlights 
can draw a lot of power compared to CCFL solutions. 

An LCD controller contains most of the circuitry needed to convert 
an input video signal into the proper format for display on the 
LCD panel. It usually includes a timing generator, which controls 
the synchronization and pixel-clock timing of the individual pixels 
on the panel. Additionally, it can offer a wide variety of extra 
features—such as on-screen display, graphics overlay blending, 
color lookup tables, dithering, and image-rotation. The more 
elaborate chips can be very expensive, often surpassing the cost of 
the processor to which they’re connected. Some media processors, 
like ADI’s Blackfin family, have ports that act electrically as an 
LCD interface—without requiring an external chip. 

An LCD driver chip is necessary to generate the proper voltage 
levels to the LCD panel. It serves as the translator between the 
output of the LCD controller and the LCD panel. The rows and 
columns are usually driven separately, with timing controlled by 
the timing generator. Since dc currents will stress the crystal 
structure and ultimately cause deterioration, liquid crystals must 
be driven with periodic polarity inversions. Therefore, depending 
on the implementation, the voltage polarity applied to each pixel 
varies on either a per-frame, per-line, or per-pixel basis. 

Connecting to TFT-LCD Modules
With the trend toward smaller, cheaper multimedia devices, there 
has been a push to combine the driver, controller, and LCD panel. 
Today, integrated TFT-LCD modules include timing generation 
and drive circuitry—thus requiring only a data-bus connection, 
clocking/synchronization lines, and power supplies. However, in 
order to meet panel-thickness and cost requirements in smaller 
PDA-type LCD panels, the timing generator often cannot be 
integrated into the LCD module. In this case, a separate external 
timing ASIC is required to produce timing signals to drive the 
individual rows and columns of the LCD panel.

mailto:david.katz@analog.com
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Nevertheless, the ADSP-BF561 Blackfin Processor can directly 
connect to many TFT-LCD modules through its parallel 
peripheral interface (PPI). The PPI is a multifunction parallel 
interface that can be configured between 8- and 16 bits in 
width. Supporting bidirectional data f low, it includes three 
synchronization lines and a clock pin for connection to an 
externally supplied clock. In addition to connecting to LCD 
panels, the PPI can gluelessly decode ITU-R BT.656 data and 
can also interface to ITU-R BT.601 video streams. 

Because the ADSP-BF561 provides many general-purpose 
timers with pulse-width-modulation (PWM) capability, it can be 
configured to provide the proper LCD timing to a module, thus 
eliminating the need for an external timing ASIC. Figure 1 
shows a block diagram of the basic connection between the 
Blackfin Processor and a TFT-LCD module. Also shown is 
the ADSP-BF561 EZ-KIT Lite evaluation board;4 its many 
conveniences provide an easy way to get started with a wide variety 
of Blackfin applications, including the one discussed here.

Power Requirements
TFT-LCD panels typically need two separate power supplies. 
First, the panel itself has a power supply line. Although the voltage 
supply requirement varies among LCD panels, the usual values are 
either 3.3 V or 5 V. Second, CCFL backlights need a high-voltage 
supply to excite the gas molecules to fluorescence. This voltage 
is usually generated with a dc-ac inverter on a separate circuit 
board within the TFT-LCD module. On the other hand, LED 
backlights, not requiring a high-voltage ac supply, can usually be 
powered directly from a 5-V or 12-V dc source. 

Clocking and Synchronization
The pixel clock period defines the pixel sampling rate, so speeds 
vary depending on panel resolution and refresh interval. For 
instance, a VGA panel (640  480 active pixels) with a 60-Hz 
refresh rate would require a 250-MHz clock, whereas a QVGA 
panel (320  240 active pixels) could run at 5 MHz. 

The synchronization lines control the time during which each 
line and video frame is scanned and displayed on the LCD. 
There are two scanning methods, interlacing and progressive scan. 
In interlacing, the odd lines of the video frame are first drawn onto 
the screen, and then the even lines are filled in. In progressive scan, 
the video lines are displayed continuously in sequence. 

Many newer progressive scan TFT-LCD panels use the 
synchronization lines to control where each line and frame begins 
and ends. The horizontal sync (HSYNC) indicates the beginning 
of each new line, while the vertical sync (VSYNC) denotes the 
beginning of each new frame. They ensure the generation of 
an aligned and viewable image. The polarity of the HSYNC 
and VSYNC pulses and the durations of the pulse widths vary 
among panels. 

The ADSP-BF561 generates the HSYNC and VSYNC signals 
with configurable PWM outputs in order to achieve the greatest 
flexibility. This allows adjustments for the polarity, pulse-width, 
and period specified by a particular TFT panel. 

Often, LCD timing requirements specify an invalid data period 
between the assertion of the horizontal sync signal and the actual 
displayed image data. The ADSP-BF561’s PPI can handle this 
timing by allowing outgoing data to be delayed by a specified 
number of clock cycles after the HSYNC signal is received. 

Data Lines
Although the module’s data interface is straightforward, there 
are many things to consider in choosing the appropriate RGB 
data format. The three most common configurations use either 
8 bits per channel for RGB (8-8-8 format), 6 bits per channel 
(6-6-6 format), or 5 bits per channel for R and B—and 6 bits 
for G (5-6-5 format). 

The 8-8-8 RGB data format provides the greatest color clarity. 
With a total of 24 bits of resolution, more than 16 million shades of 
color are available. This format offers the precision and resolution 
needed for high-performance LCD TVs. 

The 6-6-6 format is popular in portable electronics. The 18 bits of 
resolution provide over 262,000 shades of color. However, because 
the 18-pin (6+6+6) data bus doesn’t conform nicely to 16-bit 
processor data paths, a popular industry compromise is to use 
5 bits each of R and B, and 6 bits of G (5+6+5 = 16) to match 
the 16-bit data bus. This scenario works well because, of the three, 
green is the most visually important color. The least-significant bits 
of both red and blue are tied to their respective most-significant 
bits at the panel. This ensures a full dynamic range for each color 
channel (from full saturation to total black). 

RED[0:4]

GREEN[0:5]

BLUE[0:4]

VIDEO PORT

ADSP-BF561 EZ-KIT LITETFT-LCD MODULE
START SAMPLING SIGNALS

SCAN DIRECTION SIGNAL

GATE DRIVER CLOCK

HSYNC

VSYNC

DATA SAMPLING CLOCK

PWM
TIMERS

Figure 1. 5-6-5 LCD connection: The ADSP-BF561 eliminates the need for a timing 
ASIC by supplying the dotted-line connections.
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System Algorithm Flow
To understand what’s involved in emulating an LCD controller 
on a media processor (in order to replace an external device), let’s 
take a look at the system flow involved in displaying an incoming 
raw video stream on an integrated TFT-LCD module. Consider 
the example of Figure 2, where the digitized output of an NTSC 
camera provides the image stream applied to the video port of 
the ADSP-BF561 processor. We will discuss each of the steps 
shown in the figure. 

De-interlacing
In interlaced video, used by the NTSC camera in the example, 
odd and even fields are separated, so that all odd lines in a given 
frame are transferred before any even lines. For this example, 
the video stream from the camera must be de-interlaced after 
it enters the video port. This is done in one of several ways, 
depending on the desired output quality. The simplest method 
is line doubling, which copies each odd line onto the subsequent 
even line, effectively eliminating the even field in favor of a shifted 
version of the odd field. Because this creates noticeable artifacts, 
more processing-intensive methods are often used. These include 
linear interpolation, motion compensation, and median filtering. This 
latter method replaces each pixel’s intensity value with the median 
gray-scale value of its immediate neighbors to help eliminate high-
frequency noise in the image. 

Scan-Rate Conversion
Once the video has been de-interlaced, a scan-rate conversion 
process may be necessary in order to insure that the input 
frame rate matches the output display-refresh rate. In order to 
equalize the two, fields may need to be dropped or duplicated. 
As with de-interlacing, some sort of filtering is desirable to 
smooth out high-frequency artifacts caused by creating abrupt 
frame transitions. 

Chroma Resampling and Color Conversion (YCrCb Æ RGB)
Some cameras supply pixel information in raw form, exactly as the 
image sensor supplies it. This could mean one red, blue, and green 
value for each pixel in the sensor, or one Y, Cr, and Cb value for 
each pixel. Y, Cr, and Cb are mathematically related to the RGB 
values, but being less inter-correlated than RGB data, they allow 
better compression ratios. More commonly, though, the camera 
outputs a condensed stream that takes advantage of the physiology 
of the eye, providing greater weighting for green (in the RGB case) 
or for intensity (Y) in the YCrCb space. In the example of Figure 2, 
the video stream enters the PPI in 4:2:2 YCrCb format. “4:2:2” 
implies that there are four luma (Y) intensity values for every two 
chroma (Cr and Cb) values on a given video line. Each (Y,Cb) or 
(Y,Cr) 16-bit pair represents one pixel value. 

For display on an LCD panel, the data stream ultimately needs to be 
converted to RGB space. More correctly, it needs to be transformed 
to R'G'B' space, which is a gamma-corrected version of RGB space. 
Gamma correction adjusts for the nonlinear properties of the LCD 
panel, since the brightness of a given pixel is not a linear function 
of the voltage applied at that pixel site. Varying gamma changes 
the ratios of red to green to blue in an image, as well as image 
brightness. Figure 3 shows a sample equation set for converting 
between YCrCb space and R'G'B' coordinates. 

Y = (0.301)R' + (0.586)G' + (0.113)B'
Cb = –(0.172)R' – (87/256)G' + (0.512)B' + 128
Cr = (0.512)R' – (0.430)G' – (0.082)B' + 128

R' = Y + 1.371(Cr – 128)
G' = Y – 0.698(Cr – 128) – 0.336(Cb – 128)
B' = Y + 1.732(Cb – 128)

Figure 3. Sample of conversion equations between 
gamma-corrected RGB and YCrCb color spaces (assuming 
8-bit pixel components).

PACK IN
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BLACKFIN MEDIA
PROCESSOR

NTSC
CAMERA
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...

DE-INTERLACING

SCAN-RATE
CONVERSION
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4:2:2 TO 4:4:4

OUTPUT TO
"6-6-6" RGB
LCD PANEL

SCALING

GAMMA CORRECTION/
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Figure 2. Example of system flow: converting a signal from a camera source to an LCD display output. 
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This article can be found at http://www.analog.com/library/analogdialogue/archives/39-01/lcd_drive.html, with a link to a PDF.

Prior to R'G'B' conversion, the Cb and Cr channels must be 
resampled to achieve a 4:4:4 format, where one byte each of Y, 
Cb, and Cr represents one pixel value, as shown in Figure 4. A 
clear-cut way to resample is to interpolate the missing chroma 
values from their nearest neighbors by simple averaging. Higher-
order filtering might be necessary for some applications, but this 
simplified approach is often sufficient. In reality, the steps of 
chroma resampling and color space conversion can both be 
performed as a single operation, since each discrete step involves 
linear pixel operations. 

Scaling
Video scaling, the next step, is very important because it allows the 
generation of an output stream whose resolution is different from 
that of the input format. Ideally, the fixed scaling requirements 
(input data resolution, output panel resolution) are known ahead 
of time, in order to avoid the computational load of arbitrary 
scaling between input and output streams. As a much simpler, 
cheaper option, the processed image can be cropped to fit within 
the confines of a smaller LCD panel. 

Depending on the application, scaling can be done either upwards 
or downwards. It is important to understand the nature of the 
image content to be scaled (e.g., the presence of text and thin 
lines). Improper scaling can make text unreadable or cause some 
horizontal lines to disappear in the scaled image. 

The most straightforward methods of scaling involve either 
dropping pixels or duplicating existing pixels. That is, when 
scaling down to a lower resolution, a number of pixels on each 
line (and/or some number of lines per frame) can be discarded. 
While this represents a low processing load, the results will yield 
aliasing and visual artifacts. 

A small step upward in complexity uses linear interpolation to 
improve the image quality. For example, when scaling down an 
image, interpolation in either the horizontal or vertical directions 
provides a new output pixel to replace the pixels used in the 
interpolation process. As with the previous technique, information is 
still thrown away, so artifacts and aliasing will again be present. 

If the image quality is paramount, there are other ways to perform 
scaling—without reducing quality. These methods strive to 
maintain the high frequency content of the image consistent 
with the horizontal and vertical scaling, while reducing the 
effects of aliasing. For example, assume an image is to be scaled 
by a factor of Y  X. To accomplish this scaling, the image could 
be up-sampled (interpolated) by a factor, Y, filtered to eliminate 
aliasing, and then down-sampled (decimated) by a factor X. In 
practice, these two sampling processes can be combined within 
a single multirate filter. 

Y

Cr

Cb

1 PIXEL 4:4:4

3 BYTES PER PIXEL
4:4:4 YCrCb SAMPLING

3 BYTES PER PIXEL

Cb  Y  Cr Cb  Y  Cr Cb  Y  Cr

Y

Cr

Cb

1 PIXEL 4:2:2

2 BYTES PER PIXEL
4:2:2 YCrCb SAMPLING

Cb  Y  Cr Cb  Y  CrY Y  Cb

PIXEL PIXEL

PIXEL

PIXELS SHARE CHROMA

Figure 4. Illustration of 4:4:4 and 4:2:2 YCrCb sampling. 

Bit Extraction/Byte Packing
As described earlier, it is preferable to transfer 16 bits on each 
outgoing LCD clock cycle. This 5 -6 -5 bit packing can be 
accomplished with the source data. The Blackfin architecture 
offers a choice between two efficient methods to create the desired 
byte stream. The first is simply to shift the appropriate bits from 
each color (red, blue, and green), into a target register. The second 
is to make use of an EXTRACT/DEPOSIT instruction pair to 
pull out some number of bits, beginning at a specific bit location, 
and deposit the result in a target register. 

Application Note EE-2565 provides a detailed description of 
a system where the processor, mounted on an ADSP-BF561 
EZ-KIT Lite evaluation board,6 receives a streaming video input 
from a DVD player and connects to a TFT-LCD module. The 
Blackfin generates all necessary timing and performs decimation, 
color conversion, resampling, and output formatting. System data 
flows and buffer management are described in detail, and sample 
code for a working application with a specific LCD module is 
provided for download. 

CONCLUSION 
Due to its performance and popularity, members of the Blackfin 
processor family are serving in increasing numbers of multimedia 
applications. They are especially useful in system designs 
calling for displays that require small, low-power, moderate-
resolution liquid-crystal-display (LCD) panels. For many of these 
applications, Blackfin processors have sufficient performance to 
handle both signal processing and control functions, and also to 
interface directly to the LCD displays—considerably reducing 
system cost and complexity. This article has suggested how such 
a system can be accomplished, by employing a portion of the 
ADSP-BF561 Blackfin processor’s spare computing power and 
its parallel peripheral interface for display driving.  b
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Enhance Processor Performance 
in Open-Source Applications
By David Katz [david.katz@analog.com]
Tomasz Lukasiak [tomasz.lukasiak@analog.com]
Rick Gentile [richard.gentile@analog.com]

As “open source” C/C++ algorithms become an increasingly 
popular alternative to royalty-based code in embedded processing 
applications, they bring new technical challenges. Foremost among 
these is how to optimize the acquired code to work well on the 
chosen processor. This issue is paramount because a compiler 
written for a given processor family will exploit that processor’s 
strengths at the possible expense of inefficiencies in other areas. 
Performance can be degraded when the same algorithm is run 
directly out-of-the-box on a different platform. This article will 
explore the porting of such open-source algorithms to Analog 
Devices Blackfin® processors,1 outlining in the process a “plan 
of attack” leading to code optimization. 

What is Open Source?
The generally understood definition of “open source” refers 
to any project with source code that is made available to other 
programmers. Open-source software typically is developed 
collaboratively within a community of software programmers and 
distributed freely. The Linux2 operating system, for example, was 
developed this way. If all goes well, the resulting effort provides 
a continuously evolving, robust application that is well-tested 
because so many different applications take advantage of the 
code. Programmers are encouraged to use the code because they 
do not have to pay for it or develop it themselves, thus accelerating 
their project schedule. Their successful use of the code provides 
further test information.

The certification stamp of “Open Source” is owned by the Open 
Source Initiative (OSI). Code that is developed to be freely shared 
and evolved can use the Open Source trademark if the distribution 
terms conform to the OSI’s Open-Source Definition.3 This 
requires that the software be redistributed to others under certain 
guidelines. For example, under the General Public License (GPL), 
source code must be made available so that other developers will 
be able to improve or evolve it. 

What is Ogg?
There is an entire community of developers who devote their 
time to the cause of creating open standards and applications 
for digital media. One such group is the Xiph.Org Foundation,4 
a nonprofit corporation whose purpose is to support and 
develop free, open protocols and software to serve the public-, 
developer-, and business markets. This umbrella organization 
(see Figure 1) oversees the administration of such technologies 
as video- (Theora), music- (the lossy Vorbis and lossless FLAC), 
and speech (Speex) codecs.

Xiph.Org

Speex
(SPEECH)

Vorbis
(MUSIC)

FLAC
(MUSIC)

Theora
(VIDEO)

Figure 1. Xiph.Org open-source ‘umbrella’

The term Ogg denotes the container format that holds multimedia 
data. It generally serves as a prefix to the specific codec that 
generates the data. Vorbis, an audio codec we’ll discuss here, 
uses Ogg to store its bitstreams as files, so it is usually called 
“Ogg Vorbis.”5 In fact, some portable media players are 
advertised as supporting Ogg files, where the “Vorbis” part 
is implicit. Speex, a speech codec discussed below, also uses 
the Ogg format to store its bitstreams as files on a computer. 
However, Voice over Internet Protocol (VoIP) and other real-time 
communications systems do not require file storage capability, 
and a network layer like the Real-Time Transfer Protocol6 (RTP) 
is used to encapsulate these streams. As a result, even Vorbis can 
lose its Ogg shell when it is transported across a network via a 
multicast distribution server. 

What is Vorbis?
Vorbis is a fully open, patent-free, royalty-free audio compression 
format. In many respects, it is very similar in function to the 
ubiquitous MPEG-1/27 layer 3 (MP3) format and the newer 
MPEG-48 (AAC) formats. This codec was designed for mid- to 
high-quality (8-kHz to 48-kHz bandwidth, >16-bit, polyphonic) 
audio at variable bit rates from 16 to 128 kbps/channel, so it is an 
ideal format for music.

The original Vorbis implementation was developed using floating-
point arithmetic, mainly because of programming ease that led 
to faster release. Since most battery-powered embedded systems 
(like portable MP3 players) utilize less expensive, more battery-
efficient fixed-point processors, the open-source community of 
developers created a fixed-point implementation of the Vorbis 
decoder. Dubbed Tremor, the source code to this fixed-point 
Vorbis decoder was released under a license that allows it to be 
incorporated into open-source and commercial systems.

Before choosing a specific fixed-point architecture for porting the 
Vorbis decoder, it is important to analyze the types of processing 
involved in recovering audio from a compressed bitstream. A 
generalized processor flow for the Vorbis decode process (and other 
similar algorithms) is shown in Figure 2. Like many other decode 
algorithms, there are two main stages: front-end and back-end.

UNIFIED MODELTRADITIONAL MODEL
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UNPACK
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PACKET

INPUT
BITSTREAM

FRONT-END PROCESSING

MCU

DSP

BACK-END PROCESSING

INVERSE
TRANSFORM

OUTPUT PCM
SAMPLES

DECOUPLE
CHANNELS

RECOVER
SPECTRUM

Figure 2. Generalized processor flow for the Vorbis 
decode process.

During the front-end stage, the main activities are header and 
packet unpacking, table lookups, and Huffman decoding. 
Operations of this kind involve a lot of conditional code and a 
relatively large amount of program space, so embedded developers 
commonly use microcontrollers for the front end.

Back-end processing is defined by filtering functions, inverse 
transforms, and general vector operations. In contrast to the front-
end phase, the back-end stage involves more loop constructs and 
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memory accesses, often using smaller amounts of code. For these 
reasons, back-end processing in embedded systems has historically 
been dominated by full-fledged DSPs.

The Blackfin processor architecture unifies microcontroller 
(MCU) and DSP functionality, so there is no longer a need for 
two separate devices. It can be used efficiently to implement both 
front-end and back-end processing on a single chip. 

What is Speex?
Speex is an open-source, patent-free audio compression format 
designed for speech. While Vorbis is used to compress all types 
of music and audio, Speex targets speech only. For that reason, 
Speex can achieve much better results than Vorbis on speech at 
the same quality level.

Just as Vorbis competes with royalty-based algorithms like 
MP3 and AAC, Speex shares space in the speech codec market 
with GSM-EFR and the G.72x algorithms, such as G.729 
and G.722. Speex also has many features that are not present 
in most other codecs. These include variable bit rate (VBR), 
integration of multiple sampling rates in the same bitstream 
(8 kHz, 16 kHz, and 32 kHz), and stereo encoding support. 
Also, the original design goal for Speex was to facilitate 
incorporation into Internet applications, so it is a very capable 
component of VoIP phone systems.

Besides its unique technical features, Speex has the major advantages 
that it costs “nothing”—and can be distributed and modified to 
conform to a specific application. The source code is distributed 
under a license similar to that of Vorbis. Because the maintainers 
of the project realized the importance of embedding Speex into 
small fixed-point processors, a fixed-point implementation has 
been incorporated into the main code branch.

Optimizing Vorbis and Speex on Blackfin Processors
Immediate “out-of-the-box” code performance is a paramount 
consideration when an existing application, such as Vorbis or 
Speex, is ported to a new processor. However, software engineers 
can reap a big payback by familiarizing themselves with the many 
techniques available for optimizing overall performance. Some 
require only minimal extra effort. 

The first step in porting any piece of software to an embedded 
processor like Blackfin is to customize the low-level I/O routines to 
fit the system needs. For example, the reference code for both Vorbis 
and Speex assumes that data originates from a file and processed 
output is stored into a file (mainly because both implementations 
were first developed to run on Unix/Linux systems where file I/O 
routines were available). In an embedded media system, however, 

the input and/or output are often connected to A/D and D/A 
data converters that translate between the digital and real-world 
analog domains. Figure 3 shows a conceptual overview of a possible 
Vorbis-based media player implementation. The input bitstream 
is transferred from a flash memory and the decoder output drives 
an audio DAC. Also, while some media applications (for example, 
portable music players) still use files to store data, many systems 
replace storage with a network connection.

When optimizing a system like the Vorbis decoder to run efficiently, 
it is a good idea to have an organized plan of attack. One possibility 
is to first optimize the algorithm from within C, then to streamline 
system data flows, and finally to tweak individual pieces of the code 
at an assembly level. Figure 4 illustrates a representative reduction 
of processor load through successive optimization steps and shows 
how efficient this method can be.
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Figure 4. Steps in optimizing Vorbis source code on Blackfin, 
leading to significantly reduced processor utilization.

Compiler Optimization
Probably the most useful tool for code optimization is a good profiler. 
Using the statistical profiler in VisualDSP++ for Blackfin9 allows 
a programmer to quickly focus on hotspots that become apparent 
as the processor is executing code. In many implementations, 
20% of the code takes 80% of the processing time. Focusing 
on these critical sections yields the highest marginal returns. 
It turns out that loops are prime candidates for optimization in 
media algorithms like Vorbis because intensive number-crunching 
usually occurs inside of them.
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BOOT FLASH
MEMORY

(FIRMWARE)

Ogg Vorbis STREAM
COMPRESSED AUDIO

DECODED AUDIO 
OVER SERIAL PORT

AUDIO
DAC

AUDIO
OUTPUT

Figure 3. Example: Vorbis media player implementation.
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There are also global approaches to code optimization. First, a 
compiler can optimize for either memory conservation or speed. 
Also, functions can be considered for automatic inlining of assembly 
instructions into the C code. (The compiler’s inline keyword is 
used to indicate that functions should have code generated inline at 
the point of call. Doing this avoids various costs such as program 
flow latencies, function entry and exit instructions, and parameter 
passing overhead.) This, too, creates a trade-off  between space 
and speed. Lastly, compilers like the one available for Blackfin 
can use a two-phase process to derive relationships between 
various source files within a single project to further speed up 
code execution (inter-procedural analysis).

As mentioned above, most reference software for media algorithms 
uses floating-point arithmetic. But software written with fractional 
fixed-point machines in mind still misses a critical piece. The 
language of choice for the majority of codec algorithms is C, but the 
C language doesn’t “natively” support the use of fractional fixed-
point data. For this reason, many fractional fixed-point algorithms 
are emulated with integer math. This may make the code highly 
portable, but it doesn’t approach the performance attainable by 
rewriting some math functions with machine-specific compiler 
constructs for highest computational efficiency.

A specific example illustrating this point is shown in Figure 5. 
The left column shows C code and Blackfin compiler output for 
emulated fractional arithmetic that works on all integer machines. 
One call to perform a 32-bit fractional multiplication takes 
80 cycles. The r ight column shows the improvement in 
performance obtainable by utilizing (mult _ fr1x32x32), an 
intrinsic function of the Blackfin compiler that takes advantage 
of the underlying fractional hardware. With this fairly easy 
modification, an 86% speedup is achieved.

System Optimization
System optimization starts with proper memory layout. In the 
best case, all code and data would fit inside the processor’s L1 
memory. Unfortunately, this is not always possible, especially 
when large C-based applications are implemented within a 
networked application.

The real dilemma is that processors are optimized to move data 
independently of the core via direct memory access (DMA), but 
MCU programmers typically run using a cache model instead. 
While core fetches are an inescapable reality, using DMA or cache 
for large transfers is mandatory to preserve performance. 

To introduce the discussion, let’s consider several attributes 
inherently supported by the Blackfin bus architecture. The 
first is the ability to arbitrate requests without core intervention. 

Because internal memory is typically constructed in sub-banks, 
simultaneous access by the DMA controller and the core can be 
accomplished in a single cycle by placing data in separate banks. 
For example, the core can be operating on data in one sub-bank 
while the DMA is filling a new buffer in a second sub-bank. Under 
certain conditions, simultaneous access to the same sub-bank is 
also possible. 

There is usually only one physical bus available for access to 
external memory. As a result, the arbitration function becomes 
more critical. Here’s an example that clarifies the challenge: on any 
given cycle, an external memory location may be accessed to fill 
the instruction cache at the same time that it serves as the source 
and destination for incoming and outgoing data. 

Instruction Execution
Blackfin processors use hierarchical memory architectures that 
strive to balance several levels of memory having differing sizes 
and performance levels. On-chip L1 memory, which is closest to the 
core processor, operates at the full clock rate. This memory can be 
configured as SRAM and/or cache. Applications that require the 
most determinism can access on-chip SRAM in a single core clock 
cycle. For systems that require larger code sizes, additional on-chip 
and off-chip memory is available—with increased latency. 

SDRAM is slower than L1 SRAM, but it’s necessary for storing 
large programs and for data buffers. However, there are several 
ways for programmers to take advantage of the fast L1 memory. 
If the target application fits directly into L1 memory, no special 
action is required other than for the programmer to map the 
application code directly to this memory space—as in the Vorbis 
example described above. 

If the application code is too large for internal memory, as is the 
case when adding, say, a networking component to a Vorbis codec, 
a caching mechanism can be used to allow programmers to access 
larger, less expensive external memories. The cache serves as a 
way to automatically bring code into L1 memory as it is needed. 
Once in L1, the code can be executed in a single core cycle, just 
as if it were stored on-chip in the first place. The key advantage 
of this process is that the programmer does not have to manage 
the movement of code into and out of the cache. 

The use of cache is best when the code being executed is somewhat 
linear in nature. The instruction cache really performs two roles. 
First, it helps pre-fetch instructions from external memory in a 
more efficient manner. Also, since caches usually operate with 
some type of “least recently used” algorithm, instructions that run 
the most often are typically retained in cache. Therefore, if the 
code has been fetched once and hasn’t yet been replaced, it will 
be ready for execution the next time through the loop. 

ORIGINAL
int32 MULT31(int32 a, int32 b) {
 int32 c;
 c = ((long long)a * b) << 1;
 return c;
}

R2 = R0 ; // lo(a)
R0 = R1 ; // lo(b)
R1 >>>= 0x1f ; // hi(a)
R3 = R2 >>> 31 ; // hi(b)
[ SP + 0xc ] = R3 ;
CALL ___mulli3 ; // 64x64 mult (43 cycles)
R2 = 1 ;
R3 = R2 >>> 31 ;
[ SP + 0xc ] = R3 ;
CALL ___lshftli ; // 64 shift (28 cycles)
P0 = [ FP + 0x4 ] ;

80 cycles

IMPROVED
fract32 MULT31 (fract32 a, fract32 b) {
 fract32 c;
 c = mult_fr1x32x32(a, b);
 return c;
}

A1 = R0.L * R1.L ( FU ) || P0 = [ FP + 0x4 ] ;
A1 = A1 >> 16 ; // use of accumulator
R2 = PACK ( R0.L , R1.L ) ;
CC = R2 ;
A1 += R0.H * R1.L ( M ) , A0 = R0.H * R1.H ;
CC &= AV0 ;
R2 = CC ;
A1 += R1.H * R0.L ( M ) ;
A1 = A1 >>> 15 ;
R0 = ( A0 += A1 ) ;
R0 = R0 + R2 ;

11 cycles (14%)

Figure 5. Compiler intrinsic functions are an important optimization tool.
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This article can be found at http://www.analog.com/library/analogdialogue/archives/39-02/open_source.html, with a link to a PDF.

Wary real-time programmers have not trusted cache to obtain 
the best system performance because system performance will be 
degraded if a block of instructions is not in cache when needed 
for execution. This issue can be avoided by taking advantage of 
cache-locking mechanisms. When critical instructions are loaded 
into cache, the cache lines can be locked to keep the instructions 
from being replaced. This lets programmers keep what they need 
in cache, while allowing less-critical instructions to be managed 
by the caching mechanism itself. This capability sets the Blackfin 
processor apart from other signal processors.

Data Management
Having discussed how code is best managed to improve 
performance on this application, let’s now consider the options for 
data movement. As an alternative to cache, data can be moved in 
and out of L1 memory using a DMA controller that is independent 
of the core. While the core is operating on one section of memory, 
the DMA is bringing in the next data buffer to be processed. 

The Blackfin data-memory architecture is just as important to 
the overall system performance as the instruction-clock speed. 
Because there are often multiple data transfers taking place at 
any one time in a multimedia application, the bus structure must 
support both core and DMA accesses to all areas of internal 
and external memory. It is critical that arbitration of the DMA 
controller and the core be handled automatically, or performance 
will be greatly reduced. Core-to-DMA interaction should only 
be required to set up the DMA controller, and later to respond to 
interrupts when data is ready to be processed. In addition, a data 
cache can also improve overall performance. 

In the default mode, a Blackfin performs data fetches as a basic core 
function. While this is typically the least efficient mechanism for 
transferring data, it leads to the simplest programming model. A 
fast scratchpad memory is usually available as part of L1 memory; 
but for larger, off-chip buffers, the access time will suffer if the 
core must fetch everything. Not only will it take multiple cycles to 
fetch the data, but the core will also be busy doing the fetches. 

So, wherever possible, DMA should always be employed for moving 
data. Blackfin processors have DMA capabilities to transfer data 
between peripherals and memory, as well as between different 
memory segments. For example, our Vorbis implementation uses 
DMA to transfer audio buffers to the audio D/A converter. 

For this audio application, a “revolving-door” double-buffer 
scheme is used to accommodate the DMA engine. As one half 
of the circular double buffer is emptied by the serial port DMA, 
the other half is filled with decoded audio data. To throttle the 
rate at which the compressed data is decoded, the DMA interrupt 
service routine (ISR) modifies a semaphore that the decoder can 
read—in order to make sure that it is safe to write to a specific half 
of the double buffer. In a design that lacks an operating system 
(OS), polling a semaphore means wasted CPU cycles; however, 
under an OS, the scheduler can switch to another task (like a user 
interface) to keep the processor busy with real work.

The use of DMA can lead to incorrect results if data coherency is 
not considered. For this reason, the audio buffer associated with 
the audio DAC is placed in a noncacheable memory space, since 
the cache might otherwise hold a newer version of the data than 
the buffer to be transferred by the DMA. 

Assembly Optimization
The final phase of optimization has to do with rewriting isolated 
segments of the open-source C code in assembly language. The 
best candidates for performance improvement by an assembly 
rewrite are usually interrupt service routines (ISRs) and reusable 
signal-processing modules. 

The impetus for writing interrupt handlers in assembly is that 
an inefficient ISR will slow the responses of other interrupt 
handlers. For example, some audio designs must use the audio 
ISR to format AC97 data bound for the audio DAC. Because 
this happens periodically, a long audio ISR can slow down 
responses of other events. The best way to reduce the interrupt 
handler’s cycle count is to rewrite it in assembly. 

A good example of a reusable signal-processing module is the 
modified discrete cosine transform (MDCT) used in back-end 
Vorbis processing to transform a time-domain signal into a 
frequency domain representation. The compiler can never 
produce code as “tight” as a skilled assembly programmer can, 
so the C version of the MDCT is inefficient. An assembly version 
of the same function can exploit the hardware features of the 
Blackfin architecture, such as single-cycle butterfly add/subtract 
and hardware bit-reversal.

Today, Blackfin ports of both Vorbis and Speex exist and are 
available on request. These ports run on the ADSP-BF533 
EZ -KIT Lite.10 An open- source port of Clinux is also 
available at blackf in.uclinux.org.11 Together, these enable 
a wide variety of applications that seek to integrate royalty-
free speech or music capability while retaining plenty of 
processing room for additional features and functionality. 
For example, the new ADSP-BF536/ADSP-BF537,12 with 
its integrated Ethernet MAC, opens the door to low-cost 
networked audio and voice applications. Clearly, open-source 
code heralds a revolution in the embedded processing world, 
and Blackfin processors are poised to take full advantage of 
this situation. b
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PRODUCT INTRODUCTIONS: VOLUME 39, NUMBER 1
Data sheets for all ADI products can be found by entering the model 

number in the Search Box at www.analog.com

January
ADC, Pipelined, dual 10-bit, 105-MSPS ...................... AD9216
ADC, Pipelined, quad 8-bit, 65-MSPS, LVDS outputs  AD9289
ADC, Pipelined, 14-bit, 80-MSPS ..............................  AD9444
ADC, Pipelined, 8-bit, 250-MSPS, CMOS outputs, 
 single 3.3-V supply ........................................................ AD9481
Amplifier, Operational, low-power, precision, JFET 
 input, rail-to-rail output ..............................................  AD8641
Amplifier, Operational, dual, high-performance CMOS, 
 rail-to-rail outputs .......................................................  AD8692
Charge-Pump Driver, 4-channel, LED backlight for 
 color LCD display .....................................................  ADM8843
Charge-Pump Driver, 6-channel, LED backlight for 
 color LCD display .....................................................  ADM8845
Comparators, General-Purpose, include voltage 
 reference ...............................................................  ADCMP35x
Comparators, General-Purpose,
 open-drain/push-pull ......................  ADCMP370/ADCMP371
Comparators, Dual, high-speed, PECL/LVPECL, 
 single supply ....................................  ADCMP551/ADCMP552
Comparator, Single-Supply, high-speed, 
 PECL/LVPECL ..................................................... ADCMP553
Controller, Power Supply, high-efficiency, 
 dual-output ...............................................................  ADP3026
Controller, Synchronous-Buck, 1-/2-/3-phase 
 adjustable-output .......................................................  ADP3182
DC-to-DC Converter, step-up, operates at 1.2 MHz ..  ADP1610
Temperature-Sensor, hub and fan controller, up to 
 10 remote sensors .......................................................  ADT7470
Temperature-to-Digital Converter, 10-bit, includes 
 4-channel ADC, quad DAC .......................................  ADT7519
Temperature Sensors, 0.5C accuracy, pulse-width 
 modulated outputs ..........................................  TMP05/TMP06

February
Accelerometer, dual-axis, 18-g ................................  ADXL321
Embedded Processors, TigerSHARC, 500 MHz/600 MHz,
 24-/12-/4-Mbits on-chip ............................................................
  ............................. ADSP-TS201/ADSP-TS202/ADSP-TS203
Supervisor, Power Supply, super sequencer 
 and monitor ..............................................................  ADM1068

March
Amplifier, Operational, 1.5-GHz, ultrahigh-speed, 
 current-feedback ..........................................................  AD8000
Amplifier, Operational, dual, rail-to-rail outputs, 
 310 mA output drive ..................................................... AD8397
Amplifier, Operational, 20-MHz, precision, CMOS, 
 rail-to-rail I/O .............................................................. AD8615
Amplifier, Operational, quad, single-supply, zero-drift,
 rail-to-rail I/O .............................................................  AD8630
Amplifier, Operational, quad, low-cost, high-speed, 
 rail-to-rail outputs .................................................  ADA4851-4
Filter, Video, selectable cutoff frequencies ..............  ADA4410-6
ADCs, Sigma-Delta, 3-channel, 16-bit/24-bit, 
 low noise, low power .......................................  AD7798/AD7799
Audio Codec, AC’97 SoundMAX® ................................ AD1986
CCD Signal Processor, 2-channel, 14-bit, precision 
 timing generator ...........................................................  AD9942
DAC, Current-Output, 10-bit, 120 mA current sink .... AD5398
DAC, Current-Output, multiplying, 12-bit, wideband, 
 serial interface ..............................................................  AD5444
DACs, Current-Output, multiplying, 8-/10-/12-bit, 
 wideband, serial interface .................  AD5450/AD5451/AD5452
DACs, Voltage-Output, 8-/10-/12-/14-bit, nanoDAC, 
 SC70 package .....................  AD5601/AD5611/AD5621/AD5641
DAC, Voltage-Output, 16-bit, nanoDAC, 
 SOT-23 package ........................................................... AD5662
Level Translators, 4-/8-channel, 
 bidirectional logic ....................................  ADG3304/ADG3308
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