
A forum for the exchange of circuits, systems, and software for real-world signal processing

In This Issue

Editors’ Notes . 2

A Smart Modem for Robust Wireless Data Transmission
Over ISM Bands (433 MHz, 868 MHz, and 902 MHz) . 3

Blackfin® Processor’s Parallel Peripheral Interface Simplifies LCD
Connection in Portable Multimedia . 7

Enhance Processor Performance in Open-Source Applications 11

Authors . 15

Volume 39, Number 1, 2005

�����������������������������

ISSN 0161-3626 ©Analog Devices, Inc. 2005

Editors’ Notes
40 YEARS OF REAL WORLD SIGNAL PROCESSING
Forty years ago, Ray Stata and Matt Lorber
opened the doors of Analog Devices for
business, offering a line of high-performance
operational amplifiers. We’ve survived and
prospered beyond their fondest expectations,
and are still rarin’ to go. In celebration of
that anniversary, Analog Dialogue’s four print
installments will each be devoted to one of our
major technologies. We start with digital signal
processing (DSP).

ANALOG SIGNAL PROCESSING GOES DIGITAL
In 1986, a new—and apparently unlikely—contender entered the young
field of digital-signal-processor manufacturing—then dominated by TI,
the colossus of “Speak & Spell,”—with a single-chip DSP, our ADSP-2100.
As we celebrate our 40th year in the business of components for signal
processing, it seems worthwhile to reproduce here our editorial comments
that accompanied the introduction of the first Analog Devices DSP in these
pages (Analog Dialogue 20-2, 1986):

“Microprocessor?” we hear you ask. “Isn’t it a bit unseemly for a nice
‘Analog’ IC company to be designing a microprocessor? (What could
be more digital ?)”

Good question.

Our objective has always been to design and manufacture cost-effective
components that are key elements of the signal path for processing real-
world (i.e., analog) data and for which performance is maximized and
errors minimized.

The signal path? Real-world data almost always starts out as analog
(i.e., parallel, non-numeric) variables, which are measured by sensors
that provide analog electrical signals—voltage and current. The signals
must be accurately and speedily amplified, conditioned (almost always in
parallel) and converted to digital for processing. Once in digital form, they
must be processed rapidly. Often they again wind up as analog signals.

Key elements of the signal path may include preamplifiers, analog
signal processors, data converters—to and from digital—and, when
the signal is in digital form, a digital processor. Inadequacy in any one
of the key elements—amplifier, analog processor, data converter, or
microprocessor—can cause poor performance of the overall system.

Obstacles in the signal path include noise, drift, nonlinearity, and
measurement lag at the analog stages, similar obstacles in conversion—
and throughput delays in digital processing, often because of the lack of
parallelism in von Neumann architectures.

Throughout our history, ADI’s role in the signal path has been to initiate
new products (or product lines) when dissatisfied with the performance
and cost-effectiveness of what’s available (which is often limited to user-
assembled kludges, when nothing else is available). At this point in time,
we (and our worthy competitors) have virtually eliminated the user-
assembled amplifier, signal conditioner, and data converter, by designing
and marketing families of high-performance, cost-effective products.

We have always been dissatisfied with the cost, power dissipation, and
slow throughput in the digital domain; this concern led to our pioneering
development of CMOS multipliers and other digital signal-processing
ICs (note that because we were already familiar with analog multipliers,
digital multipliers became just another analog signal-processing tool).
Note also our commitment to signal processing—not payroll, desktop
publishing, or order-handling products).

www.analog.com/analogdialogue dialogue.editor@analog.com
Analog Dialogue is the free technical magazine of Analog Devices, Inc., published
continuously for 39 years—starting in 1967. It discusses products, applications,
technology, and techniques for analog, digital, and mixed-signal processing. It is
currently published in two editions—online, monthly at the above URL, and quarterly
in print, as periodic retrospective collections of articles that have appeared online. In
addition to technical articles, the online edition has timely announcements, linking to
data sheets of newly released and pre-release products, and “Potpourri”—a universe
of links to important and rapidly proliferating sources of relevant information and
activity on the Analog Devices website and elsewhere. The Analog Dialogue site is,
in effect, a “high-pass-filtered” point of entry to the www.analog.com site—the
virtual world of Analog Devices. In addition to all its current information, the
Analog Dialogue site has archives with all recent editions, starting from Volume 29,
Number 2 (1995), plus three special anniversary issues, containing useful articles
extracted from earlier editions, going all the way back to Volume 1, Number 1.

If you wish to subscribe to—or receive copies of—the print edition, please go to
www.analog.com/analogdialogue and click on <subscribe>. Your comments
are always welcome; please send messages to dialogue.editor@analog.com
or to these individuals: Dan Sheingold, Editor [dan.sheingold@analog.com]
or Scott Wayne, Managing Editor and Publisher [scott.wayne@analog.com].

And our dissatisfaction with insufficient throughput in DSP processors
led to the design of the ADSP-2100, which stresses the use of that analog
characteristic, parallelism, to minimize instruction cycles, whether in
processing, data transfer, or interrupt handling. It’s neat! We invite you
to read about it.

Since that time, such names as SHARC®, TigerSHARC®, Blackfin®,
EZ Kit, and VisualDSP++ ® have become household words, as they
remove barriers whenever DSPs are considered.

Dan Sheingold [dan.sheingold@analog.com]

FROM NUMBER CRUNCHING TO MULTIMEDIA
In the early days of digital signal processing,
the ADSP-2100 single-chip microprocessor
was typically used for applications that required
high-speed numeric processing. Integrating
a 16-bit arithmetic-logic unit (ALU), 16-bit
multiplier-accumulator (MAC), 16-bit shifter,
two data-address generators, and a program
sequencer, it used external memory for program
and data storage. Operating at 8 MHz, it dissipated
600 mW. In a single clock cycle it could: generate the
next program address; fetch the next instruction;
perform one or two data moves; update one or
two data address pointers; and perform a computational operation.

Over the intervening twenty years, digital signal processors have gotten
smaller, faster, less expensive, more powerful, and more efficient—and
they integrate up to 24 Mbits of on-chip memory. Even more important,
perhaps, are the host of peripherals that can be found on modern embedded
processors. The ADSP-BF537 Blackfin processor, for example, includes
an IEEE 802.3-compliant 10/100 Ethernet medium access controller,
Controller Area Network (CAN) 2.0B interface, parallel peripheral
interface (PPI) supporting ITU-R 656 video data formats, and dual-
channel, full-duplex synchronous ports (SPORT) supporting eight
stereo I2S channels. The ADSP-21367 SHARC processor’s digital audio
interface (DAI) includes an S/PDIF digital audio receiver/transmitter,
8-channel sample-rate converter, sixteen pulse-width modulators, four
PLL clock generators, eight serial ports, and ROM-based audio decoder
and post-processor algorithms. The ADSP-TS201 TigerSHARC processor
includes an 8-Gbps 64-bit external port, 14-channel direct memory-access
(DMA) controller, and four 8-Gbps bidirectional link ports. Together they
provide unparalleled interface capabilities without the use of any additional
external glue logic.

Processing power and peripherals have created opportunities for digital
signal processors in diverse applications—including professional audio
mixing consoles, always-on cell-phone coverage, home-theater surround
sound, fingerprint recognition, network music players, wireless video,
satellite radio, and 3D motion tracking. Some of these are described
below. Details about these applications and many more can be found at
http://www.analog.com/processors/news/customerstories.

The TigerSHARC processor is the only processor capable of implementing
a software-defined digital baseband for 3G base stations, allowing the
same platform to be easily adapted for use in multiple regions—and to be
easily upgraded to support new capabilities. The TigerSHARC processor
is also the first to implement an all-software physical layer for IEEE 802.16
WiMAX broadband wireless modems. Its best-in-class I/O bandwidth and
scalable architecture allow OEMs to differentiate their products through
advanced techniques, such as smart antennas using space-time coding and
adaptive beam-forming.

The 32-bit floating-point SHARC processor has the necessary speed and
efficiency to handle the complex post-processing algorithms required to
deliver 6.1 discrete channels of surround sound from any audio material,
allowing listeners to take full advantage of their home-theater speaker
systems, even when listening to VHS tapes, FM radio broadcasts, or
stereo music CDs. The SHARC processor’s digital audio interface, large
memory array, and VisualDSP++ graphical system design and development
environment combine to allow manufacturers to base multiple products
with various I/O requirements on a single hardware design, fully leveraging
their design time and development costs.

Blackfin processors provide both control functions and multimedia
processing capabilities, enabling diversity receivers to operate in harsh
weather and low light conditions. Providing fast information transfer,
these receivers allow soldiers, police officers, and firefighters in the
field to exchange audio, video, and data from sources such as cameras,
microphones, and global-positioning systems (GPS)—increasing personnel
safety in environments that are subject to high levels of interference. The low
power consumption and dynamic power management inherent in Blackfin
processors is crucial for their successful use in compact, portable, battery-
powered equipment.

Scott Wayne [scott.wayne@analog.com]

mailto:dan.sheingold@analog.com
mailto:scott.wayne@analog.com

Analog Dialogue Volume 39 Number 1 3

ADF702x
ISM

TRANSCEIVER
433/868/915MHz

ADSP-BF531
400MHz

52KB SRAM

VRO

VDD INT

VDD EXT VDD RTC RTXI RTXO CLKIN

SPI

SERIAL
EEPROM
(BOOT)

EXTERNAL BUS

OPTIONAL
SDRAM

C
O

N
T

R
O

L
L

E
R

/P
E

R
IP

H
E

R
A

L
S UART

SPORT1
RxCLK

CVCO

Tx/Rx DATA

SLEFL0

SDATAFL1

SREADFL4

SCLKFL3

INT/LOCKRFSO

MUXOUTFL5

CEFL6

DROPRI

DTOPRI

RCLKO

SPORT0

VREG2

C2

VREG3

C3

VREG4

C4

GND2GND1 GND5 GND4

C1, C2, C3, C4 = 100nF X7R
XTAL1: 10MHz TO 12MHz
2.5V < VDD TYPICAL < 3.3V

22nF VREG1

C1

ADC_IN

VCO_IN

CPOUT

RFIN

RFIN

RFINB

VE

C13 C12

C11

R11

R12

L3

L2

L1

C7

C6

C5

BF
FILTER

CP2CP1 XTAL1

OSC2OSC1

100nF

100nF

100nF

22pF22pF XTAL2
32kHz

VDDVDD4VDD3VDD2RSETVDD1 RLNA

R
S

E
T

R
L

N
A

CLKOUT

10nF100F

D1

L5

100nF 100nF 100nF

100nF

L4

C10

+VDD

Figure 1. Circuit diagram of the modem.

A Smart Modem for Robust Wireless
Data Transmission Over ISM Bands
(433 MHz, 868 MHz, and 902 MHz)
By Patrick Butler [patrick.butler@analog.com]
Austin Harney [austin.harney@analog.com]

In the last few years, radio-frequency technology has advanced
by leaps and bounds, resulting in a phenomenal number of new
wireless applications. Most of these applications—Bluetooth®,1
WLAN 802.11b,2 and cordless telephones, for example—are
appearing alongside the microwave oven in the license-free UHF
band at 2.4 GHz. Because of the heavy traffic in the 2.4-GHz
band, and its associated co-existence issues, interest has increased
in the ISM (industrial, scientific, medical) UHF bands—available
at the lower frequencies of 868 MHz and 433 MHz in Europe,
and 902 MHz to 928 MHz in the United States.

Unlike at 2.4 GHz, however, there is no common global standard
for the lower-UHF bands; this means that a manufacturer’s system
would have to be adaptable to each region’s regulations. However,
this burden has been eased considerably by the introduction of
flexible ISM-band transceivers, such as the ADF7020,3 which
allow operation from 433 MHz to 960 MHz.

Unfortunately, one cannot entirely eliminate the problem of
interference and co-existence by simply switching to these lower-
UHF bands. As might be expected, there are plenty of legacy
systems already operating in these bands. In wireless systems,
data will be corrupted if an interferer collides with the wanted
signal—resulting in an insufficient signal-to-noise ratio (SNR)
at the receiver. A traditional way of dealing with this problem is to
use some sort of error-detection technique, e.g., cyclic redundancy
checking (CRC). CRC can detect this corruption to a certain extent
and trigger the retransmission of erroneous packets (this is usually
called automatic repeat request, ARQ), but at the cost of considerable
delay and loss of performance in real-time applications.

This need to retransmit corrupted packets is not particularly
onerous for a low-throughput system—one that sends a burst of
data from a remote sensor once every few minutes, for example.
But it does become a problem for applications such as wireless
audio or video transmission, with their higher data rates,
since the latency introduced by ARQ might be unacceptable.
It also introduces problems in industrial process-control and
telemetry systems, which must maintain throughput in a noisy
environment without the need for many retransmissions. Such
longer associated transmission times also increase the overall
system power consumption.

A powerful solution to this dilemma lies in the use of forward
error-correction (FEC) techniques, able to detect and correct
errors over a large enough number of bits to compensate for
partial packet loss and ensure service quality. A low-cost, yet
powerful, processor such as the Blackfin®4 ADSP-BF5315 can
be used to implement intensive error-correction techniques
requiring millions of instructions per second (MIPS)—convolutional
coding with bit-scrambling and interleaving, for example—to
deliver a data rate of over 100 kbps with a transmission error
rate of less than 10–6.

When used in conjunction with the ADF7020 ISM-band transceiver
IC, with its typical range of several hundred meters (line of sight),
this approach provides a robust solution for designers wanting to
replace their current wire-line solutions without compromising
quality of service. Thanks to its 400-MIPS (million instruction-per-
second) and 800-MMACS (million multiply-accumulate-per-second)
capabilities, the ADSP-BF531 can also accommodate protocols to
support various wireless configurations and topologies, including
point-to-point, multi-point, and broadcast, as well as sophisticated
encryption and source coding and decoding algorithms such as
Motion JPEG (MJPEG).

Figure 1 is a detailed circuit diagram of a wireless digital modem
built around the ADF7020 ISM-band transceiver and its
companion controller, the ADSP-BF531. The two main chips share
the same power supply voltage (2.3 V<VCC<3.6 V), and they are

mailto:patrick.butler@analog.com
mailto:austin.harney@analog.com
http://www.bluetooth.com/
http://grouper.ieee.org/groups/802/11/main.html
http://www.analog.com/en/prod/0%2C2877%2CADF7020%2C00.html
http://www.analog.com/processors/processors/blackfin/index.html
http://www.analog.com/en/prod/0%2C2877%2CADSP-BF531%2C00.html

4 Analog Dialogue Volume 39 Number 1

directly connected for control operations, using the ADSP-BF531
flags (digital I/Os) and transmit/receive operations, using one of
the serial synchronous ports (SPORT0).

Data will be transmitted to—or received from—the modem,
either asynchronously over the UART or synchronously with the
remaining SPORT.

A Versatile Transceiver
The ADF7020 is a complete monolithic radio transceiver
built using 0.25 - m CMOS technology. It is capable of
operating in the 433 -MHz and 868 -MHz European ISM
bands (ETSI EN300 220-1 standard),6 and the North American
902-to-928-MHz band—covered by FCC Part 15 regulations.7
Requiring few external components and offering a high degree
of flexibility, it allows the user to configure the part for specific
applications. For example, there is a choice among different
modulation schemes, such as FSK, GFSK, ASK, and OOK. The
user can also trade off between sensitivity and selectivity—a useful
approach for systems that have tough linearity requirements. The
maximum data rate for the ADF7020 is 200 kbps; its sister part,
the ADF7025,8 has an even greater data rate: 384 kbps.

Like most recent ISM-band transceivers, the ADF7020 utilizes a
fractional-N phase-locked-loop (PLL) synthesizer, which allows
the selection of the channels at 433 MHz, plus any channel
between 868 MHz and 928 MHz, with a resolution better than
1 kHz. This frequency agility allows the ADF7020 to be used in
frequency-hopping systems—as specified in the US FCC Part 15

regulations—but it is also possible to operate on a single channel
in the US band if the output power is below –1.5 dBm.

The high-resolution fractional-N synthesizer also forms part of a
novel automatic frequency-control (AFC) loop, which compensates
for incoming frequency errors and allows lower-tolerance, less-
expensive, crystals to be used. The block diagram of the ADF7020
is shown in Figure 2. The PLL loop filter components can be
determined with the help of the ADIsimPLL9 simulation software,
available on the Analog Devices website.

Forward Error-Correction with the Blackfin Processor
While the use of a really high-performance processor in
conjunction with a radio is common in digital cellular systems, it
might at first glance seem inappropriate for meeting the goal of a
low-cost digital modem. Implementing FEC operations at several
hundred kilobits per second, however, requires computationally
intensive digital signal-processing power comparable to that
provided by the Blackfin ADSP-BF531. While a standard 8051 or
ARM-based microcontroller, for example, can adequately handle
the user interface, protocol stack, RF transceiver supervision,
and power sequencing, it would not have the computation
“horsepower” required for the FEC scheme. In addition to
implementing the control functions, the computing power and
real-time capabilities of the ADSP-BF531 allow it to: increase
the effective channel data rate, reduce communication latency,
compensate for channel propagation variations to maintain link
quality, and ensure communication security.

Tx/Rx
CONTROL

AGC
CONTROL

FSK/ASK
DEMODULATOR

DATA
SYNCHRONIZERBB

FILTER
RSSI 7-BIT ADC

GAIN

DIV R

SERIAL
PORT

PA OUT

OFFSET
CORRECTION

OFFSET
CORRECTION

LNA

VCO

PFDCP

AFC
CONTROL

XTAL

DIVIDERS/
MUXING N/N+1DIV P

MUX

TEMP
SENSOR

RING
OSC

CLK
DIV

CLK OUT

TEST MUX

VCO IN CP OUT

BIAS LDO(1:4)

MUX OUTADC INPUTRSET CREG(1:4)

RLNA

RFIN

RFINB

SLE

SDATA IN

CE

RxCLK

XCLK OUT

SDATA OUT

SCLK

INT/LOCK

Tx/Rx DATA

FSK MOD
CONTROL

GAUSSIAN
FILTER

-
MODULATOR

LPF

LPF

Figure 2. Functional block diagram of the ADF7020.

http://www.linxtechnologies.com/documents/EN300220-1_2000.pdf
http://www.fcc.gov/oet/info/rules/
http://www.analog.com/en/prod/0%2C2877%2CADF7025%2C00.html
http://www.analog.com/en/content/0%2C2886%2C770%5F%5F16127%2C00.html

Analog Dialogue Volume 39 Number 1 5

Figure 3 illustrates the various functions to be carried out across
the transmission channel, including processing functions handled
for both transmit (Tx) and receive (Rx) operations. The Blackfin
processor, when sitting on the transmitter side handles both
data-rate control and data partitioning, so data is transmitted in
packets at a quasi-constant rate. The data packets are processed
for forward error-correction (FEC) before they modulate the
carrier’s frequency. This is achieved by adding redundant bits
that the receiver will use to detect and correct errors. The bits
added to the incoming packets will, of course, increase the required
bandwidth for a given information bit rate.

Among the different applicable methods of FEC, convolutional
coding, while quite simple to implement, gives good protection
against channel Gaussian noise disturbances and helps meet
minimum Hamming-distance criteria. A convolutional encoder
is a finite state-machine comprising an L-stage shift register,
N modulo-2 adders, and a multiplexer to convert the output into
a serial bit stream. The connections between the shifter outputs
and the adder inputs determine the polynomial code. Using two
specifically applicable instructions, the Blackfin core performs all
these operations very efficiently.

At the other end of the transmission channel, the decoder section
implements the Viterbi algorithm (hard-input/hard-output). For
maximum likelihood decoding, the Viterbi decoder compares all
the possible code sequences to the received code vector. The code
sequence whose Hamming distance from the received sequence
is the shortest is the good one. For a code like (1/2, 7, 371, 247)
with a constraint length, K = L + 1 of 7, the decoder can correct
up to six consecutive erroneous bits. Depending upon the system
requirements, constraint lengths (K) from 5 to 9 must be supported
by the ADSP-BF531 in such wireless applications.

However, even a convolutional code with a constraint length of 9
does not protect against burst noise that might hit the transmitted
packets over a longer length of time. The use of a complementary
protection technique based on temporal diversity is mandatory.
Temporal diversity, i.e., spreading the bits or symbols out over time,
improves the performance of a coded communication system in the
presence of multiple paths, fading, and burst noise. It thus reduces
the probability of a consecutive number of bits being corrupted.
Scrambling and simple block interleaving functions achieve this
objective without employing more complex corrective codes (like
Reed-Solomon). Here again, the ADSP-BF531 is helpful with
two specific vector instructions—one that computes the Viterbi
trellis butterflies and one that reconstructs data for the path-search
(trace-back) operation.

TRANSMISSION
CHANNEL

DSP_Rx

CHANNEL DECODING

NOISE DISTURBANCES

FEEDBACK/QoS

DATA

SYNC

OUTPUT OR
JPEG SOURCE

DECODING

DE-PACKETIZATION
CRC

VITERBI
DECODER

BLOCK
DEINTERLEAVER

DEMODULATION
(GFSK)

SYNCHRONIZATION

INPUT OR
JPEG SOURCE

CODING

PACKETIZATION
CRC

CONVOLUTIONAL
ENCODER

BLOCK
INTERLEAVING

+
RATE CONTROL

MODULATION
(GFSK)

DSP_Tx

CHANNEL CODING

RF TRANSMITTER

RF RECEIVER

Figure 3. Signal-processing functions.

This encoded data is then passed on to the ADF7020
transmitter section, which does some additional filtering and
Gaussian frequency-shift-keying (GFSK) modulation. GFSK
modulation has the advantage of reducing the occupied spectral
bandwidth—a helpful operation when seeking to meet adjacent-
channel requirements for the European 868-MHz bands.

On the receiver side, the ADF7020’s internal preamble-matching
circuitry helps to fulfill the critical packet-synchronization
task. This hardware function permits the recognition or
identification of a 12-, 16-, 20-, or 24-bit-long programmable
synchronization word, or a packet preamble, without the
intervention of the ADSP-BF531 core. Upon a valid preamble
match, the circuitry asserts the ADF7020 INT/LOCK pin,
which signals the beginning of a new packet to the serial port
(RFS0) and triggers the Viterbi decoder. This unique circuitry
is somewhat error-tolerant—in a sense, it even allows a valid
match for up to three incorrect bits. This reduces the number
of packets lost due to preamble misses, as the preamble is not
encoded and is therefore not protected. To further reduce
preamble misses, the receiver uses one of the ADSP-BF531
32-bit timers as a watchdog that generates the expected pulse
on RFS0 if the INT/LOCK signal does not show up after a
few symbols. This use of a hardware mechanism to retrieve
packet synchronization markers was chosen in order to save
a lot of processor MIPS—compared to a full implementation
with software analysis and tracking.

Real-World Application—Wireless Video Over ISM
As noted earlier, efficient wireless digital-video transmission
calls for robustness against channel failures. Video codecs
are excellent candidates for applications with smart, reliable
Blackf in processor - based wireless modems. Given the
limitation of the ISM wireless channel bandwidth, a relatively
high image/video compression ratio is required in order to
deliver the expected frame rate and quality for a given image
size without too much latency. Unfortunately, Motion JPEG
and other video codecs require a very low transmission-error
rate, typically 10–6, because the source-coding process removes
most of the redundant information. This is particularly true
with some efficient entropy coders, such as Huffman, where
a single erroneous bit makes the original data impossible
to decode. A required bit- error rate (BER) less than 10–6
places very stringent requirements on the radio, but it can
be achieved by using a channel coding scheme like the one
described above.

6 Analog Dialogue Volume 39 Number 1

A very low BER does not ensure that all the data packets will be
entropy-decoded correctly. To improve the image quality, it is
necessary to provide some mechanism to conceal part of an image
if too many important bits in a packet are corrupted. For this
purpose, every packet is segmented and entropy-coded separately.
After the detection of an erroneous segment or block, its content is
discarded. Depending upon the information lost, the dc and first
two ac coefficients of the discrete cosine transform (DCT) of the
corresponding image block are estimated from the coefficients of
the neighboring blocks. The final low-pass 2D 3  3 de-blocking
filter stage, designed to remove DCT blocking artifacts, helps to
smooth resulting distortion.

The ADSP-BF531 has more than enough power to handle
both the MJPEG encoding or decoding and the channel FEC
processing. No external memory is required for frame sizes up to
QCIF (176 pixels by 144 pixels) with a 4:2:2 video format. Larger
frames are possible at the cost of an external SDRAM, which
can also be used to store compressed video. This very low-cost
processor can interface directly to CCIR-656-compatible low-cost
CMOS image sensors or TFT displays via its parallel peripheral
interface (see “Blackfin Processor’s Parallel Peripheral Interface
Simplifies LCD Connection in Portable Multimedia”).10 Standard
low-cost, low-power PCM audio codecs can be connected to the
available serial port, SPORT1, to support digital transmission
of speech or audio. Or, the processor can provide speech coding
and decoding with moderate delay by executing a software codec
similar to the FR-GSM (13 kbps).

With a raw data rate of 200 kbps it is possible to achieve “baseline”
MJPEG transmission over ISM at a rate of about four QCIF
4:2:2 color-frames per second (fps), while leaving 20 kbps
for speech. This is acceptable for simple low-cost consumer
appliances, such as video baby monitors, video door phones, or
wireless home-security cameras. The functional block diagram
of such a point-to-point video transmission system (baby monitor)

BATTERY CELL
POWER

MANAGEMENT

ISM
TRANSCEIVER

ADF7020
MJPEG

ENCODER
+

FEC

ADSP-BF531

AUDIO
CODEC

CMOS
VIDEO

SENSOR ENCODE BOARD

BATTERY CELL
POWER

MANAGEMENT

ISM
TRANSCEIVER

ADF7020

AUDIO
CODEC

LCD
DISPLAYDECODE BOARD

RANGE FROM
FEW TO TENS
OF METERS

MJPEG
ENCODER

+
FEC

ADSP-BF531

Figure 4. Video transmission system application.

is shown in Figure 4. The overall bill of materials (BOM) for this
application is in the $75 range; and the 2.5” LCD TFT display
is the most expensive part.

The application code corresponding to the system block
diagram shown at Figure 4 is available from Arbos Ingénierie
(www.arbos-dsp.com),11 a French DSP third-party partner of
Analog Devices.

CONCLUSION
The unique combination of the ADF7020 ISM-band transceiver
and the ADSP-BF531 Blackfin processor exhibits excellent radio-
link performance at a very attractive cost, with demonstrable
versatility in various ISM digital wireless transmission systems.
Further improvements to this communications model can
be anticipated with future members of the ADF702x RF
transceiver family and new TCP/IP friendly Blackfin DSP
processors, together with additional channel- and source-coding
software modules. b

REFERENCES—VALID AS OF MARCH 2005
 1 http://www.bluetooth.com
 2 http://grouper.ieee.org/groups/802/11/main.html
 3 http://www.analog.com/en/prod/0,2877,ADF7020,00.html
 4 http: //www.analog.com/processors /processors /blackf in/

index.html
 5 http://www.analog.com/en/prod/0,2877,ADSP-BF531,00.html
 6 http://www.linxtechnologies.com/documents/EN300220-

1_2000.pdf
 7 http://www.fcc.gov/oet/info/rules
 8 http://www.analog.com/en/prod/0,2877,ADF7025,00.html
 9 http://www.analog.com/en/content/0,2886,770_850_

16127,00.html
 10 http://www.analog.com/library/analogdialogue/archives/39-01/

lcd_drive.html
 11 http://www.arbos-dsp.com

This article can be found at http://www.analog.com/library/analogdialogue/archives/39-03/smart_modem.html, with a link to a PDF.

http://www.analog.com/library/analogDialogue/archives/39-01/lcd_drive.html
http://www.analog.com/library/analogDialogue/archives/39-01/lcd_drive.html
http://www.arbos-dsp.com/
http://www.bluetooth.com/
http://grouper.ieee.org/groups/802/11/main.html
http://www.analog.com/en/prod/0%2C2877%2CADF7020%2C00.html
http://www.analog.com/processors/processors/blackfin/index.html
http://www.analog.com/processors/processors/blackfin/index.html
http://www.analog.com/processors/processors/blackfin/index.html
http://www.analog.com/en/prod/0%2C2877%2CADSP-BF531%2C00.html
http://www.linxtechnologies.com/documents/EN300220-1_2000.pdf
http://www.linxtechnologies.com/documents/EN300220-1_2000.pdf
http://www.fcc.gov/oet/info/rules/
http://www.analog.com/en/prod/0%2C2877%2CADF7025%2C00.html
http://www.analog.com/en/prod/0%2C2877%2CADF7025%2C00.html
http://www.analog.com/en/content/0%2C2886%2C770%5F%5F16127%2C00.html
http://www.analog.com/en/content/0%2C2886%2C770%5F%5F16127%2C00.html
http://www.analog.com/library/analogDialogue/archives/39-01/lcd_drive.html
http://www.analog.com/library/analogDialogue/archives/39-01/lcd_drive.html
http://www.analog.com/library/analogDialogue/archives/39-01/lcd_drive.html
http://www.arbos-dsp.com/
http://www.analog.com/library/analogdialogue/archives/39-03/smart_modem.html

Analog Dialogue Volume 39 Number 1 7

Blackfin® Processor’s Parallel
Peripheral Interface Simplifies LCD
Connection in Portable Multimedia
By David Katz [david.katz@analog.com]
Ching Lam [ching.lam@analog.com]
Rick Gentile [richard.gentile@analog.com]

As low-power, fixed-point processors such as ADI’s Blackfin1
family increase in performance and popularity, they can serve more
and more multimedia applications. Many of these applications
require small, low-power liquid-crystal-display (LCD) panels that
have, in general, lower video resolutions than the full NTSC/PAL
video used for broadcast TV. These panels are usually controlled
either by a microcontroller or a dedicated LCD controller chip. But
today, Blackfin processors have sufficient performance to handle
both signal processing and control functions, and also to interface
directly to the LCD displays—considerably reducing system cost
and complexity. This article will discuss how the ADSP-BF5612
Blackfin processor’s parallel peripheral interface3 (PPI) integrates
LCD display capability into the world of high-performance media
processing, allowing a single processor to be used for both system
processing and display driving.

Passive vs. Active
There are two major categories of LCD array technology—
passive -matrix and active -matrix.

In the former, a glass substrate imprinted with rows forms a
liquid-crystal sandwich with a substrate imprinted with columns.
Pixels are defined at row-column intersections. To activate a given
pixel, a timing circuit energizes the pixel’s column while grounding
its row. The resulting voltage differential renders the liquid crystal
opaque in the vicinity of that pixel location, blocking light from
coming through.

Although it is straightforward, passive matrix technology does have
some shortcomings. For one, screen refresh times are relatively
slow (which can result in ghosting for fast-moving images).
Also, there is a tendency for the voltage field at a row-column
intersection to bleed over into neighboring pixels, partly untwisting
the liquid crystals and blocking some light from passing through
the surrounding pixel area. The effect is to blur edges in the image
and reduce contrast.

Active-matrix LCD technology, using an IC-like manufacturing
process, is a considerable improvement. Each pixel has a capacitor,
to retain charge between refresh cycles, and a transistor switch
(giving rise to the popular term, thin-film-transistor—TFT—
display). To address a particular pixel, its row is enabled, and a
voltage is applied to its column. This has the effect of isolating only
the pixel of interest, so others in the vicinity are not influenced.
The current drawn in controlling a given pixel is reduced, so pixels
can be switched at a faster rate, leading to faster refresh rates for
TFTs compared to passive displays. What’s more, modulating
the voltage level applied to the pixel allows many discrete levels of
brightness. Today, it is common to have 256 levels, corresponding
to 8 bits of intensity.

For color displays, each pixel actually has three subpixels—with
red, green, and blue (R-G-B) filters—that the human eye sees
as a single-color spot. For example, a 320  240 pixel display
actually has 960  240 subpixels, accounting for the R, G, and B
components. Each subpixel has 8 bits of intensity, thus forming
the basis of the common 24-bit color LCD display.

Since LCD technology relies on regulating the passage of light
at the pixel level, one might wonder where the light would be
generated. Many small, low-cost monochrome LCDs are reflective,
meaning that external light reflects off the substrates but is blocked
in areas where a liquid crystal segment is charged.

Since TFT color displays have millions of transistors that filter
the incoming light, reflective displays would not be effective in
active-matrix technology. Instead, the displays are backlit (or
transmissive); typically a fluorescent light—or a white light-emitting-
diode (LED) array, integrated into the display—generates light that
is modulated as it is transmitted through the various layers of the
LCD “sandwich.” Unfortunately, the large surface area consumed
by the transistors necessitates a greater light output from the
backlight. In addition, each transistor of a TFT display
dissipates power, so active -matrix displays are somewhat
power-hungry compared with their passive cousins.

Components of a TFT-LCD System
Connecting to a TFT-LCD panel can seem complicated,
considering all of the different components involved. First,
there’s the panel itself, which houses an array of pixels arranged
for strobing by row and column at high speed, referenced to the
pixel-clock frequency.

The backlight is often a cold-cathode fluorescent lamp (CCFL). In
a CCFL, excited gas molecules emit bright light while generating
very little heat. This low dissipation, plus their durability, long life,
and straightforward drive requirements, make them ideal for LCD
panel applications. As mentioned above, LEDs are also a popular
backlight method, mainly for small- to mid-sized panels. They
have the advantages of low cost, low operating voltage, long life, and
good intensity control. However, in larger panels, LED backlights
can draw a lot of power compared to CCFL solutions.

An LCD controller contains most of the circuitry needed to convert
an input video signal into the proper format for display on the
LCD panel. It usually includes a timing generator, which controls
the synchronization and pixel-clock timing of the individual pixels
on the panel. Additionally, it can offer a wide variety of extra
features—such as on-screen display, graphics overlay blending,
color lookup tables, dithering, and image-rotation. The more
elaborate chips can be very expensive, often surpassing the cost of
the processor to which they’re connected. Some media processors,
like ADI’s Blackfin family, have ports that act electrically as an
LCD interface—without requiring an external chip.

An LCD driver chip is necessary to generate the proper voltage
levels to the LCD panel. It serves as the translator between the
output of the LCD controller and the LCD panel. The rows and
columns are usually driven separately, with timing controlled by
the timing generator. Since dc currents will stress the crystal
structure and ultimately cause deterioration, liquid crystals must
be driven with periodic polarity inversions. Therefore, depending
on the implementation, the voltage polarity applied to each pixel
varies on either a per-frame, per-line, or per-pixel basis.

Connecting to TFT-LCD Modules
With the trend toward smaller, cheaper multimedia devices, there
has been a push to combine the driver, controller, and LCD panel.
Today, integrated TFT-LCD modules include timing generation
and drive circuitry—thus requiring only a data-bus connection,
clocking/synchronization lines, and power supplies. However, in
order to meet panel-thickness and cost requirements in smaller
PDA-type LCD panels, the timing generator often cannot be
integrated into the LCD module. In this case, a separate external
timing ASIC is required to produce timing signals to drive the
individual rows and columns of the LCD panel.

mailto:david.katz@analog.com
mailto:ching.lam@analog.com
mailto:richard.gentile@analog.com
http://www.analog.com/processors/processors/blackfin/
http://www.analog.com/en/prod/0%2C2877%2CADSP%25252DBF561%2C00.html
http://www.analog.com/UploadedFiles/Associated_Docs/84676332PPI_TL.pdf

8 Analog Dialogue Volume 39 Number 1

Nevertheless, the ADSP-BF561 Blackfin Processor can directly
connect to many TFT-LCD modules through its parallel
peripheral interface (PPI). The PPI is a multifunction parallel
interface that can be configured between 8- and 16 bits in
width. Supporting bidirectional data f low, it includes three
synchronization lines and a clock pin for connection to an
externally supplied clock. In addition to connecting to LCD
panels, the PPI can gluelessly decode ITU-R BT.656 data and
can also interface to ITU-R BT.601 video streams.

Because the ADSP-BF561 provides many general-purpose
timers with pulse-width-modulation (PWM) capability, it can be
configured to provide the proper LCD timing to a module, thus
eliminating the need for an external timing ASIC. Figure 1
shows a block diagram of the basic connection between the
Blackfin Processor and a TFT-LCD module. Also shown is
the ADSP-BF561 EZ-KIT Lite evaluation board;4 its many
conveniences provide an easy way to get started with a wide variety
of Blackfin applications, including the one discussed here.

Power Requirements
TFT-LCD panels typically need two separate power supplies.
First, the panel itself has a power supply line. Although the voltage
supply requirement varies among LCD panels, the usual values are
either 3.3 V or 5 V. Second, CCFL backlights need a high-voltage
supply to excite the gas molecules to fluorescence. This voltage
is usually generated with a dc-ac inverter on a separate circuit
board within the TFT-LCD module. On the other hand, LED
backlights, not requiring a high-voltage ac supply, can usually be
powered directly from a 5-V or 12-V dc source.

Clocking and Synchronization
The pixel clock period defines the pixel sampling rate, so speeds
vary depending on panel resolution and refresh interval. For
instance, a VGA panel (640  480 active pixels) with a 60-Hz
refresh rate would require a 250-MHz clock, whereas a QVGA
panel (320  240 active pixels) could run at 5 MHz.

The synchronization lines control the time during which each
line and video frame is scanned and displayed on the LCD.
There are two scanning methods, interlacing and progressive scan.
In interlacing, the odd lines of the video frame are first drawn onto
the screen, and then the even lines are filled in. In progressive scan,
the video lines are displayed continuously in sequence.

Many newer progressive scan TFT-LCD panels use the
synchronization lines to control where each line and frame begins
and ends. The horizontal sync (HSYNC) indicates the beginning
of each new line, while the vertical sync (VSYNC) denotes the
beginning of each new frame. They ensure the generation of
an aligned and viewable image. The polarity of the HSYNC
and VSYNC pulses and the durations of the pulse widths vary
among panels.

The ADSP-BF561 generates the HSYNC and VSYNC signals
with configurable PWM outputs in order to achieve the greatest
flexibility. This allows adjustments for the polarity, pulse-width,
and period specified by a particular TFT panel.

Often, LCD timing requirements specify an invalid data period
between the assertion of the horizontal sync signal and the actual
displayed image data. The ADSP-BF561’s PPI can handle this
timing by allowing outgoing data to be delayed by a specified
number of clock cycles after the HSYNC signal is received.

Data Lines
Although the module’s data interface is straightforward, there
are many things to consider in choosing the appropriate RGB
data format. The three most common configurations use either
8 bits per channel for RGB (8-8-8 format), 6 bits per channel
(6-6-6 format), or 5 bits per channel for R and B—and 6 bits
for G (5-6-5 format).

The 8-8-8 RGB data format provides the greatest color clarity.
With a total of 24 bits of resolution, more than 16 million shades of
color are available. This format offers the precision and resolution
needed for high-performance LCD TVs.

The 6-6-6 format is popular in portable electronics. The 18 bits of
resolution provide over 262,000 shades of color. However, because
the 18-pin (6+6+6) data bus doesn’t conform nicely to 16-bit
processor data paths, a popular industry compromise is to use
5 bits each of R and B, and 6 bits of G (5+6+5 = 16) to match
the 16-bit data bus. This scenario works well because, of the three,
green is the most visually important color. The least-significant bits
of both red and blue are tied to their respective most-significant
bits at the panel. This ensures a full dynamic range for each color
channel (from full saturation to total black).

RED[0:4]

GREEN[0:5]

BLUE[0:4]

VIDEO PORT

ADSP-BF561 EZ-KIT LITETFT-LCD MODULE
START SAMPLING SIGNALS

SCAN DIRECTION SIGNAL

GATE DRIVER CLOCK

HSYNC

VSYNC

DATA SAMPLING CLOCK

PWM
TIMERS

Figure 1. 5-6-5 LCD connection: The ADSP-BF561 eliminates the need for a timing
ASIC by supplying the dotted-line connections.

http://www.analog.com/en/epHSProd/0%2C2542%2CBF561%2DHARDWARE%2C00.html

Analog Dialogue Volume 39 Number 1 9

System Algorithm Flow
To understand what’s involved in emulating an LCD controller
on a media processor (in order to replace an external device), let’s
take a look at the system flow involved in displaying an incoming
raw video stream on an integrated TFT-LCD module. Consider
the example of Figure 2, where the digitized output of an NTSC
camera provides the image stream applied to the video port of
the ADSP-BF561 processor. We will discuss each of the steps
shown in the figure.

De-interlacing
In interlaced video, used by the NTSC camera in the example,
odd and even fields are separated, so that all odd lines in a given
frame are transferred before any even lines. For this example,
the video stream from the camera must be de-interlaced after
it enters the video port. This is done in one of several ways,
depending on the desired output quality. The simplest method
is line doubling, which copies each odd line onto the subsequent
even line, effectively eliminating the even field in favor of a shifted
version of the odd field. Because this creates noticeable artifacts,
more processing-intensive methods are often used. These include
linear interpolation, motion compensation, and median filtering. This
latter method replaces each pixel’s intensity value with the median
gray-scale value of its immediate neighbors to help eliminate high-
frequency noise in the image.

Scan-Rate Conversion
Once the video has been de-interlaced, a scan-rate conversion
process may be necessary in order to insure that the input
frame rate matches the output display-refresh rate. In order to
equalize the two, fields may need to be dropped or duplicated.
As with de-interlacing, some sort of filtering is desirable to
smooth out high-frequency artifacts caused by creating abrupt
frame transitions.

Chroma Resampling and Color Conversion (YCrCb Æ RGB)
Some cameras supply pixel information in raw form, exactly as the
image sensor supplies it. This could mean one red, blue, and green
value for each pixel in the sensor, or one Y, Cr, and Cb value for
each pixel. Y, Cr, and Cb are mathematically related to the RGB
values, but being less inter-correlated than RGB data, they allow
better compression ratios. More commonly, though, the camera
outputs a condensed stream that takes advantage of the physiology
of the eye, providing greater weighting for green (in the RGB case)
or for intensity (Y) in the YCrCb space. In the example of Figure 2,
the video stream enters the PPI in 4:2:2 YCrCb format. “4:2:2”
implies that there are four luma (Y) intensity values for every two
chroma (Cr and Cb) values on a given video line. Each (Y,Cb) or
(Y,Cr) 16-bit pair represents one pixel value.

For display on an LCD panel, the data stream ultimately needs to be
converted to RGB space. More correctly, it needs to be transformed
to R'G'B' space, which is a gamma-corrected version of RGB space.
Gamma correction adjusts for the nonlinear properties of the LCD
panel, since the brightness of a given pixel is not a linear function
of the voltage applied at that pixel site. Varying gamma changes
the ratios of red to green to blue in an image, as well as image
brightness. Figure 3 shows a sample equation set for converting
between YCrCb space and R'G'B' coordinates.

Y = (0.301)R' + (0.586)G' + (0.113)B'
Cb = –(0.172)R' – (87/256)G' + (0.512)B' + 128
Cr = (0.512)R' – (0.430)G' – (0.082)B' + 128

R' = Y + 1.371(Cr – 128)
G' = Y – 0.698(Cr – 128) – 0.336(Cb – 128)
B' = Y + 1.732(Cb – 128)

Figure 3. Sample of conversion equations between
gamma-corrected RGB and YCrCb color spaces (assuming
8-bit pixel components).

PACK IN
"5-6-5" WORD

BLACKFIN MEDIA
PROCESSOR

NTSC
CAMERA

P
P
I

0
2
4
...

1
3
5
...

0
1
2
3
4
5
...

DE-INTERLACING

SCAN-RATE
CONVERSION

CHROMA
RE-SAMPLE

4:2:2 TO 4:4:4

OUTPUT TO
"6-6-6" RGB
LCD PANEL

SCALING

GAMMA CORRECTION/
YCrCb TO R'G'B'

CONVERSION

Figure 2. Example of system flow: converting a signal from a camera source to an LCD display output.

10 Analog Dialogue Volume 39 Number 1

This article can be found at http://www.analog.com/library/analogdialogue/archives/39-01/lcd_drive.html, with a link to a PDF.

Prior to R'G'B' conversion, the Cb and Cr channels must be
resampled to achieve a 4:4:4 format, where one byte each of Y,
Cb, and Cr represents one pixel value, as shown in Figure 4. A
clear-cut way to resample is to interpolate the missing chroma
values from their nearest neighbors by simple averaging. Higher-
order filtering might be necessary for some applications, but this
simplified approach is often sufficient. In reality, the steps of
chroma resampling and color space conversion can both be
performed as a single operation, since each discrete step involves
linear pixel operations.

Scaling
Video scaling, the next step, is very important because it allows the
generation of an output stream whose resolution is different from
that of the input format. Ideally, the fixed scaling requirements
(input data resolution, output panel resolution) are known ahead
of time, in order to avoid the computational load of arbitrary
scaling between input and output streams. As a much simpler,
cheaper option, the processed image can be cropped to fit within
the confines of a smaller LCD panel.

Depending on the application, scaling can be done either upwards
or downwards. It is important to understand the nature of the
image content to be scaled (e.g., the presence of text and thin
lines). Improper scaling can make text unreadable or cause some
horizontal lines to disappear in the scaled image.

The most straightforward methods of scaling involve either
dropping pixels or duplicating existing pixels. That is, when
scaling down to a lower resolution, a number of pixels on each
line (and/or some number of lines per frame) can be discarded.
While this represents a low processing load, the results will yield
aliasing and visual artifacts.

A small step upward in complexity uses linear interpolation to
improve the image quality. For example, when scaling down an
image, interpolation in either the horizontal or vertical directions
provides a new output pixel to replace the pixels used in the
interpolation process. As with the previous technique, information is
still thrown away, so artifacts and aliasing will again be present.

If the image quality is paramount, there are other ways to perform
scaling—without reducing quality. These methods strive to
maintain the high frequency content of the image consistent
with the horizontal and vertical scaling, while reducing the
effects of aliasing. For example, assume an image is to be scaled
by a factor of Y  X. To accomplish this scaling, the image could
be up-sampled (interpolated) by a factor, Y, filtered to eliminate
aliasing, and then down-sampled (decimated) by a factor X. In
practice, these two sampling processes can be combined within
a single multirate filter.

Y

Cr

Cb

1 PIXEL 4:4:4

3 BYTES PER PIXEL
4:4:4 YCrCb SAMPLING

3 BYTES PER PIXEL

Cb Y Cr Cb Y Cr Cb Y Cr

Y

Cr

Cb

1 PIXEL 4:2:2

2 BYTES PER PIXEL
4:2:2 YCrCb SAMPLING

Cb Y Cr Cb Y CrY Y Cb

PIXEL PIXEL

PIXEL

PIXELS SHARE CHROMA

Figure 4. Illustration of 4:4:4 and 4:2:2 YCrCb sampling.

Bit Extraction/Byte Packing
As described earlier, it is preferable to transfer 16 bits on each
outgoing LCD clock cycle. This 5 -6 -5 bit packing can be
accomplished with the source data. The Blackfin architecture
offers a choice between two efficient methods to create the desired
byte stream. The first is simply to shift the appropriate bits from
each color (red, blue, and green), into a target register. The second
is to make use of an EXTRACT/DEPOSIT instruction pair to
pull out some number of bits, beginning at a specific bit location,
and deposit the result in a target register.

Application Note EE-2565 provides a detailed description of
a system where the processor, mounted on an ADSP-BF561
EZ-KIT Lite evaluation board,6 receives a streaming video input
from a DVD player and connects to a TFT-LCD module. The
Blackfin generates all necessary timing and performs decimation,
color conversion, resampling, and output formatting. System data
flows and buffer management are described in detail, and sample
code for a working application with a specific LCD module is
provided for download.

CONCLUSION
Due to its performance and popularity, members of the Blackfin
processor family are serving in increasing numbers of multimedia
applications. They are especially useful in system designs
calling for displays that require small, low-power, moderate-
resolution liquid-crystal-display (LCD) panels. For many of these
applications, Blackfin processors have sufficient performance to
handle both signal processing and control functions, and also to
interface directly to the LCD displays—considerably reducing
system cost and complexity. This article has suggested how such
a system can be accomplished, by employing a portion of the
ADSP-BF561 Blackfin processor’s spare computing power and
its parallel peripheral interface for display driving. b

REFERENCES—VALID AS OF JANUARY 2005
1 http://www.analog.com/processors/processors/blackfin/
2 http://www.analog.com/en/epProd/0%2%2CCADSP-
BF561%2C00.html

3 http://www.analog.com/UploadedFiles /Associated_Docs/
84676332PPI_TL.pdf

4 http://www.analog.com/en/epHSProd/0%2C2542%2CBF561%
2DHARDWARE%2C00.html

5 http://www.analog.com/UploadedFiles/Application_Notes/
4450739634970271712286EE256v01.pdf

6 http://www.analog.com/en/epHSProd/0%2C2542%2CBF561%
2DHARDWARE%2C00.html

http://www.analog.com/library/analogdialogue/archives/39-01/lcd_drive.html
http://www.analog.com/UploadedFiles/Application_Notes/4450739634970271712286EE256v01.pdf
http://www.analog.com/en/epHSProd/0%2C2542%2CBF561%2DHARDWARE%2C00.html
http://www.analog.com/en/prod/0%2C2877%2CADSP%25252DBF561%2C00.html
http://www.analog.com/en/prod/0%2C2877%2CADSP%25252DBF561%2C00.html
http://www.analog.com/UploadedFiles/Associated_Docs/84676332PPI_TL.pdf
http://www.analog.com/UploadedFiles/Associated_Docs/84676332PPI_TL.pdf
http://www.analog.com/UploadedFiles/Associated_Docs/84676332PPI_TL.pdf
http://www.analog.com/UploadedFiles/Associated_Docs/84676332PPI_TL.pdf
http://www.analog.com/en/epHSProd/0%2C2542%2CBF561%2DHARDWARE%2C00.html
http://www.analog.com/en/epHSProd/0%2C2542%2CBF561%2DHARDWARE%2C00.html
http://www.analog.com/UploadedFiles/Application_Notes/4450739634970271712286EE256v01.pdf
http://www.analog.com/UploadedFiles/Application_Notes/4450739634970271712286EE256v01.pdf
http://www.analog.com/en/epHSProd/0%2C2542%2CBF561%2DHARDWARE%2C00.html
http://www.analog.com/en/epHSProd/0%2C2542%2CBF561%2DHARDWARE%2C00.html

Analog Dialogue Volume 39 Number 1 11

Enhance Processor Performance
in Open-Source Applications
By David Katz [david.katz@analog.com]
Tomasz Lukasiak [tomasz.lukasiak@analog.com]
Rick Gentile [richard.gentile@analog.com]

As “open source” C/C++ algorithms become an increasingly
popular alternative to royalty-based code in embedded processing
applications, they bring new technical challenges. Foremost among
these is how to optimize the acquired code to work well on the
chosen processor. This issue is paramount because a compiler
written for a given processor family will exploit that processor’s
strengths at the possible expense of inefficiencies in other areas.
Performance can be degraded when the same algorithm is run
directly out-of-the-box on a different platform. This article will
explore the porting of such open-source algorithms to Analog
Devices Blackfin® processors,1 outlining in the process a “plan
of attack” leading to code optimization.

What is Open Source?
The generally understood definition of “open source” refers
to any project with source code that is made available to other
programmers. Open-source software typically is developed
collaboratively within a community of software programmers and
distributed freely. The Linux2 operating system, for example, was
developed this way. If all goes well, the resulting effort provides
a continuously evolving, robust application that is well-tested
because so many different applications take advantage of the
code. Programmers are encouraged to use the code because they
do not have to pay for it or develop it themselves, thus accelerating
their project schedule. Their successful use of the code provides
further test information.

The certification stamp of “Open Source” is owned by the Open
Source Initiative (OSI). Code that is developed to be freely shared
and evolved can use the Open Source trademark if the distribution
terms conform to the OSI’s Open-Source Definition.3 This
requires that the software be redistributed to others under certain
guidelines. For example, under the General Public License (GPL),
source code must be made available so that other developers will
be able to improve or evolve it.

What is Ogg?
There is an entire community of developers who devote their
time to the cause of creating open standards and applications
for digital media. One such group is the Xiph.Org Foundation,4
a nonprofit corporation whose purpose is to support and
develop free, open protocols and software to serve the public-,
developer-, and business markets. This umbrella organization
(see Figure 1) oversees the administration of such technologies
as video- (Theora), music- (the lossy Vorbis and lossless FLAC),
and speech (Speex) codecs.

Xiph.Org

Speex
(SPEECH)

Vorbis
(MUSIC)

FLAC
(MUSIC)

Theora
(VIDEO)

Figure 1. Xiph.Org open-source ‘umbrella’

The term Ogg denotes the container format that holds multimedia
data. It generally serves as a prefix to the specific codec that
generates the data. Vorbis, an audio codec we’ll discuss here,
uses Ogg to store its bitstreams as files, so it is usually called
“Ogg Vorbis.”5 In fact, some portable media players are
advertised as supporting Ogg files, where the “Vorbis” part
is implicit. Speex, a speech codec discussed below, also uses
the Ogg format to store its bitstreams as files on a computer.
However, Voice over Internet Protocol (VoIP) and other real-time
communications systems do not require file storage capability,
and a network layer like the Real-Time Transfer Protocol6 (RTP)
is used to encapsulate these streams. As a result, even Vorbis can
lose its Ogg shell when it is transported across a network via a
multicast distribution server.

What is Vorbis?
Vorbis is a fully open, patent-free, royalty-free audio compression
format. In many respects, it is very similar in function to the
ubiquitous MPEG-1/27 layer 3 (MP3) format and the newer
MPEG-48 (AAC) formats. This codec was designed for mid- to
high-quality (8-kHz to 48-kHz bandwidth, >16-bit, polyphonic)
audio at variable bit rates from 16 to 128 kbps/channel, so it is an
ideal format for music.

The original Vorbis implementation was developed using floating-
point arithmetic, mainly because of programming ease that led
to faster release. Since most battery-powered embedded systems
(like portable MP3 players) utilize less expensive, more battery-
efficient fixed-point processors, the open-source community of
developers created a fixed-point implementation of the Vorbis
decoder. Dubbed Tremor, the source code to this fixed-point
Vorbis decoder was released under a license that allows it to be
incorporated into open-source and commercial systems.

Before choosing a specific fixed-point architecture for porting the
Vorbis decoder, it is important to analyze the types of processing
involved in recovering audio from a compressed bitstream. A
generalized processor flow for the Vorbis decode process (and other
similar algorithms) is shown in Figure 2. Like many other decode
algorithms, there are two main stages: front-end and back-end.

UNIFIED MODELTRADITIONAL MODEL

UNPACK
HEADERS

UNPACK
AUDIO

PACKET

INPUT
BITSTREAM

FRONT-END PROCESSING

MCU

DSP

BACK-END PROCESSING

INVERSE
TRANSFORM

OUTPUT PCM
SAMPLES

DECOUPLE
CHANNELS

RECOVER
SPECTRUM

Figure 2. Generalized processor flow for the Vorbis
decode process.

During the front-end stage, the main activities are header and
packet unpacking, table lookups, and Huffman decoding.
Operations of this kind involve a lot of conditional code and a
relatively large amount of program space, so embedded developers
commonly use microcontrollers for the front end.

Back-end processing is defined by filtering functions, inverse
transforms, and general vector operations. In contrast to the front-
end phase, the back-end stage involves more loop constructs and

mailto:david.katz@analog.com
mailto:tomasz.lukasiak@analog.com
mailto:richard.gentile@analog.com
http://www.analog.com/processors/processors/blackfin/
http://www.analog.com/processors/processors/blackfin/
http://www.analog.com/processors/processors/blackfin/
http://www.linux.org/
http://www.opensource.org/docs/definition.php
http://www.xiph.org/
http://www.vorbis.com/
http://www.ietf.org/rfc/rfc1889.txt
http://www.chiariglione.org/mpeg/
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm

12 Analog Dialogue Volume 39 Number 1

memory accesses, often using smaller amounts of code. For these
reasons, back-end processing in embedded systems has historically
been dominated by full-fledged DSPs.

The Blackfin processor architecture unifies microcontroller
(MCU) and DSP functionality, so there is no longer a need for
two separate devices. It can be used efficiently to implement both
front-end and back-end processing on a single chip.

What is Speex?
Speex is an open-source, patent-free audio compression format
designed for speech. While Vorbis is used to compress all types
of music and audio, Speex targets speech only. For that reason,
Speex can achieve much better results than Vorbis on speech at
the same quality level.

Just as Vorbis competes with royalty-based algorithms like
MP3 and AAC, Speex shares space in the speech codec market
with GSM-EFR and the G.72x algorithms, such as G.729
and G.722. Speex also has many features that are not present
in most other codecs. These include variable bit rate (VBR),
integration of multiple sampling rates in the same bitstream
(8 kHz, 16 kHz, and 32 kHz), and stereo encoding support.
Also, the original design goal for Speex was to facilitate
incorporation into Internet applications, so it is a very capable
component of VoIP phone systems.

Besides its unique technical features, Speex has the major advantages
that it costs “nothing”—and can be distributed and modified to
conform to a specific application. The source code is distributed
under a license similar to that of Vorbis. Because the maintainers
of the project realized the importance of embedding Speex into
small fixed-point processors, a fixed-point implementation has
been incorporated into the main code branch.

Optimizing Vorbis and Speex on Blackfin Processors
Immediate “out-of-the-box” code performance is a paramount
consideration when an existing application, such as Vorbis or
Speex, is ported to a new processor. However, software engineers
can reap a big payback by familiarizing themselves with the many
techniques available for optimizing overall performance. Some
require only minimal extra effort.

The first step in porting any piece of software to an embedded
processor like Blackfin is to customize the low-level I/O routines to
fit the system needs. For example, the reference code for both Vorbis
and Speex assumes that data originates from a file and processed
output is stored into a file (mainly because both implementations
were first developed to run on Unix/Linux systems where file I/O
routines were available). In an embedded media system, however,

the input and/or output are often connected to A/D and D/A
data converters that translate between the digital and real-world
analog domains. Figure 3 shows a conceptual overview of a possible
Vorbis-based media player implementation. The input bitstream
is transferred from a flash memory and the decoder output drives
an audio DAC. Also, while some media applications (for example,
portable music players) still use files to store data, many systems
replace storage with a network connection.

When optimizing a system like the Vorbis decoder to run efficiently,
it is a good idea to have an organized plan of attack. One possibility
is to first optimize the algorithm from within C, then to streamline
system data flows, and finally to tweak individual pieces of the code
at an assembly level. Figure 4 illustrates a representative reduction
of processor load through successive optimization steps and shows
how efficient this method can be.

OPTIMIZATION STEPS

P
R

O
C

E
S

S
O

R
 U

T
IL

IZ
A

T
IO

N
 (

%
)

100

0

10

20

30

40

50

60

70

80

90

COMPILER
OPTIMIZATION

SYSTEM
OPTIMIZATION

ASSEMBLY
OPTIMIZATION

USE
SPECIALIZED
INSTRUCTIONS

STREAMLINE
DATA FLOW

LET
COMPILER
OPTIMIZE

PARTITION
MEMORY
EFFICIENTLY

EXPLOIT
ARCHITECTURE

Figure 4. Steps in optimizing Vorbis source code on Blackfin,
leading to significantly reduced processor utilization.

Compiler Optimization
Probably the most useful tool for code optimization is a good profiler.
Using the statistical profiler in VisualDSP++ for Blackfin9 allows
a programmer to quickly focus on hotspots that become apparent
as the processor is executing code. In many implementations,
20% of the code takes 80% of the processing time. Focusing
on these critical sections yields the highest marginal returns.
It turns out that loops are prime candidates for optimization in
media algorithms like Vorbis because intensive number-crunching
usually occurs inside of them.

FLASH
MEMORY

(COMPRESSED
AUDIO DATA)

SDRAM

BOOT FLASH
MEMORY

(FIRMWARE)

Ogg Vorbis STREAM
COMPRESSED AUDIO

DECODED AUDIO
OVER SERIAL PORT

AUDIO
DAC

AUDIO
OUTPUT

Figure 3. Example: Vorbis media player implementation.

http://www.analog.com/en/prod/0%2C2877%2CVISUALDSPBF%2C00.html

Analog Dialogue Volume 39 Number 1 13

There are also global approaches to code optimization. First, a
compiler can optimize for either memory conservation or speed.
Also, functions can be considered for automatic inlining of assembly
instructions into the C code. (The compiler’s inline keyword is
used to indicate that functions should have code generated inline at
the point of call. Doing this avoids various costs such as program
flow latencies, function entry and exit instructions, and parameter
passing overhead.) This, too, creates a trade-off between space
and speed. Lastly, compilers like the one available for Blackfin
can use a two-phase process to derive relationships between
various source files within a single project to further speed up
code execution (inter-procedural analysis).

As mentioned above, most reference software for media algorithms
uses floating-point arithmetic. But software written with fractional
fixed-point machines in mind still misses a critical piece. The
language of choice for the majority of codec algorithms is C, but the
C language doesn’t “natively” support the use of fractional fixed-
point data. For this reason, many fractional fixed-point algorithms
are emulated with integer math. This may make the code highly
portable, but it doesn’t approach the performance attainable by
rewriting some math functions with machine-specific compiler
constructs for highest computational efficiency.

A specific example illustrating this point is shown in Figure 5.
The left column shows C code and Blackfin compiler output for
emulated fractional arithmetic that works on all integer machines.
One call to perform a 32-bit fractional multiplication takes
80 cycles. The r ight column shows the improvement in
performance obtainable by utilizing (mult _ fr1x32x32), an
intrinsic function of the Blackfin compiler that takes advantage
of the underlying fractional hardware. With this fairly easy
modification, an 86% speedup is achieved.

System Optimization
System optimization starts with proper memory layout. In the
best case, all code and data would fit inside the processor’s L1
memory. Unfortunately, this is not always possible, especially
when large C-based applications are implemented within a
networked application.

The real dilemma is that processors are optimized to move data
independently of the core via direct memory access (DMA), but
MCU programmers typically run using a cache model instead.
While core fetches are an inescapable reality, using DMA or cache
for large transfers is mandatory to preserve performance.

To introduce the discussion, let’s consider several attributes
inherently supported by the Blackfin bus architecture. The
first is the ability to arbitrate requests without core intervention.

Because internal memory is typically constructed in sub-banks,
simultaneous access by the DMA controller and the core can be
accomplished in a single cycle by placing data in separate banks.
For example, the core can be operating on data in one sub-bank
while the DMA is filling a new buffer in a second sub-bank. Under
certain conditions, simultaneous access to the same sub-bank is
also possible.

There is usually only one physical bus available for access to
external memory. As a result, the arbitration function becomes
more critical. Here’s an example that clarifies the challenge: on any
given cycle, an external memory location may be accessed to fill
the instruction cache at the same time that it serves as the source
and destination for incoming and outgoing data.

Instruction Execution
Blackfin processors use hierarchical memory architectures that
strive to balance several levels of memory having differing sizes
and performance levels. On-chip L1 memory, which is closest to the
core processor, operates at the full clock rate. This memory can be
configured as SRAM and/or cache. Applications that require the
most determinism can access on-chip SRAM in a single core clock
cycle. For systems that require larger code sizes, additional on-chip
and off-chip memory is available—with increased latency.

SDRAM is slower than L1 SRAM, but it’s necessary for storing
large programs and for data buffers. However, there are several
ways for programmers to take advantage of the fast L1 memory.
If the target application fits directly into L1 memory, no special
action is required other than for the programmer to map the
application code directly to this memory space—as in the Vorbis
example described above.

If the application code is too large for internal memory, as is the
case when adding, say, a networking component to a Vorbis codec,
a caching mechanism can be used to allow programmers to access
larger, less expensive external memories. The cache serves as a
way to automatically bring code into L1 memory as it is needed.
Once in L1, the code can be executed in a single core cycle, just
as if it were stored on-chip in the first place. The key advantage
of this process is that the programmer does not have to manage
the movement of code into and out of the cache.

The use of cache is best when the code being executed is somewhat
linear in nature. The instruction cache really performs two roles.
First, it helps pre-fetch instructions from external memory in a
more efficient manner. Also, since caches usually operate with
some type of “least recently used” algorithm, instructions that run
the most often are typically retained in cache. Therefore, if the
code has been fetched once and hasn’t yet been replaced, it will
be ready for execution the next time through the loop.

ORIGINAL
int32 MULT31(int32 a, int32 b) {
 int32 c;
 c = ((long long)a * b) << 1;
 return c;
}

R2 = R0 ; // lo(a)
R0 = R1 ; // lo(b)
R1 >>>= 0x1f ; // hi(a)
R3 = R2 >>> 31 ; // hi(b)
[SP + 0xc] = R3 ;
CALL ___mulli3 ; // 64x64 mult (43 cycles)
R2 = 1 ;
R3 = R2 >>> 31 ;
[SP + 0xc] = R3 ;
CALL ___lshftli ; // 64 shift (28 cycles)
P0 = [FP + 0x4] ;

80 cycles

IMPROVED
fract32 MULT31 (fract32 a, fract32 b) {
 fract32 c;
 c = mult_fr1x32x32(a, b);
 return c;
}

A1 = R0.L * R1.L (FU) || P0 = [FP + 0x4] ;
A1 = A1 >> 16 ; // use of accumulator
R2 = PACK (R0.L , R1.L) ;
CC = R2 ;
A1 += R0.H * R1.L (M) , A0 = R0.H * R1.H ;
CC &= AV0 ;
R2 = CC ;
A1 += R1.H * R0.L (M) ;
A1 = A1 >>> 15 ;
R0 = (A0 += A1) ;
R0 = R0 + R2 ;

11 cycles (14%)

Figure 5. Compiler intrinsic functions are an important optimization tool.

14 Analog Dialogue Volume 39 Number 1

This article can be found at http://www.analog.com/library/analogdialogue/archives/39-02/open_source.html, with a link to a PDF.

Wary real-time programmers have not trusted cache to obtain
the best system performance because system performance will be
degraded if a block of instructions is not in cache when needed
for execution. This issue can be avoided by taking advantage of
cache-locking mechanisms. When critical instructions are loaded
into cache, the cache lines can be locked to keep the instructions
from being replaced. This lets programmers keep what they need
in cache, while allowing less-critical instructions to be managed
by the caching mechanism itself. This capability sets the Blackfin
processor apart from other signal processors.

Data Management
Having discussed how code is best managed to improve
performance on this application, let’s now consider the options for
data movement. As an alternative to cache, data can be moved in
and out of L1 memory using a DMA controller that is independent
of the core. While the core is operating on one section of memory,
the DMA is bringing in the next data buffer to be processed.

The Blackfin data-memory architecture is just as important to
the overall system performance as the instruction-clock speed.
Because there are often multiple data transfers taking place at
any one time in a multimedia application, the bus structure must
support both core and DMA accesses to all areas of internal
and external memory. It is critical that arbitration of the DMA
controller and the core be handled automatically, or performance
will be greatly reduced. Core-to-DMA interaction should only
be required to set up the DMA controller, and later to respond to
interrupts when data is ready to be processed. In addition, a data
cache can also improve overall performance.

In the default mode, a Blackfin performs data fetches as a basic core
function. While this is typically the least efficient mechanism for
transferring data, it leads to the simplest programming model. A
fast scratchpad memory is usually available as part of L1 memory;
but for larger, off-chip buffers, the access time will suffer if the
core must fetch everything. Not only will it take multiple cycles to
fetch the data, but the core will also be busy doing the fetches.

So, wherever possible, DMA should always be employed for moving
data. Blackfin processors have DMA capabilities to transfer data
between peripherals and memory, as well as between different
memory segments. For example, our Vorbis implementation uses
DMA to transfer audio buffers to the audio D/A converter.

For this audio application, a “revolving-door” double-buffer
scheme is used to accommodate the DMA engine. As one half
of the circular double buffer is emptied by the serial port DMA,
the other half is filled with decoded audio data. To throttle the
rate at which the compressed data is decoded, the DMA interrupt
service routine (ISR) modifies a semaphore that the decoder can
read—in order to make sure that it is safe to write to a specific half
of the double buffer. In a design that lacks an operating system
(OS), polling a semaphore means wasted CPU cycles; however,
under an OS, the scheduler can switch to another task (like a user
interface) to keep the processor busy with real work.

The use of DMA can lead to incorrect results if data coherency is
not considered. For this reason, the audio buffer associated with
the audio DAC is placed in a noncacheable memory space, since
the cache might otherwise hold a newer version of the data than
the buffer to be transferred by the DMA.

Assembly Optimization
The final phase of optimization has to do with rewriting isolated
segments of the open-source C code in assembly language. The
best candidates for performance improvement by an assembly
rewrite are usually interrupt service routines (ISRs) and reusable
signal-processing modules.

The impetus for writing interrupt handlers in assembly is that
an inefficient ISR will slow the responses of other interrupt
handlers. For example, some audio designs must use the audio
ISR to format AC97 data bound for the audio DAC. Because
this happens periodically, a long audio ISR can slow down
responses of other events. The best way to reduce the interrupt
handler’s cycle count is to rewrite it in assembly.

A good example of a reusable signal-processing module is the
modified discrete cosine transform (MDCT) used in back-end
Vorbis processing to transform a time-domain signal into a
frequency domain representation. The compiler can never
produce code as “tight” as a skilled assembly programmer can,
so the C version of the MDCT is inefficient. An assembly version
of the same function can exploit the hardware features of the
Blackfin architecture, such as single-cycle butterfly add/subtract
and hardware bit-reversal.

Today, Blackfin ports of both Vorbis and Speex exist and are
available on request. These ports run on the ADSP-BF533
EZ -KIT Lite.10 An open- source port of Clinux is also
available at blackf in.uclinux.org.11 Together, these enable
a wide variety of applications that seek to integrate royalty-
free speech or music capability while retaining plenty of
processing room for additional features and functionality.
For example, the new ADSP-BF536/ADSP-BF537,12 with
its integrated Ethernet MAC, opens the door to low-cost
networked audio and voice applications. Clearly, open-source
code heralds a revolution in the embedded processing world,
and Blackfin processors are poised to take full advantage of
this situation. b

FOR FURTHER READING
Parr is, Cl i f f and Phi l Wr ight. Implementation Issues and
Tradeof fs for Dig i ta l Audio Decoders. Monmouthsh i re,
UK: ESPICO, Ltd.

REFERENCES—VALID AS OF FEBRUARY 2005
1http://www.analog.com/processors/processors/blackfin/
2http://www.linux.org/
3http://www.opensource.org/docs/definition.php
4http://www.Xiph.Org/
5http://www.vorbis.com/
6http://www.ietf.org/rfc/rfc1889.txt
7http://www.chiariglione.org/mpeg/
8http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm
9http://www.analog.com/en/prod/0,2877,VISUALDSPBF,00.html
10http: / /www.analog.com/en /prod /0,2877,BF533 -

HARDWARE,00.html
11http://blackfin.uclinux.org/
12http://www.analog.com/Analog_Root/static /promotions /

blackfin750/index.html

www.analog.com/library/analogdialogue/archives/39-02/open_source.html
http://www.analog.com/en/prod/0%2C2877%2CBF533-HARDWARE%2C00.html
http://www.analog.com/en/prod/0%2C2877%2CBF533-HARDWARE%2C00.html
http://blackfin.uclinux.org/
http://www.analog.com/Analog_Root/static/promotions/blackfin750/index.html
http://www.analog.com/processors/processors/blackfin/
http://www.linux.org/
http://www.opensource.org/docs/definition.php
http://www.xiph.org/
http://www.vorbis.com/
http://www.ietf.org/rfc/rfc1889.txt
http://www.chiariglione.org/mpeg/
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm
http://www.analog.com/en/prod/0%2C2877%2CVISUALDSPBF%2C00.html
http://www.analog.com/en/prod/0%2C2877%2CBF533-HARDWARE%2C00.html
http://www.analog.com/en/prod/0%2C2877%2CBF533-HARDWARE%2C00.html
http://blackfin.uclinux.org/
http://www.analog.com/Analog_Root/static/promotions/blackfin750/index.html
http://www.analog.com/Analog_Root/static/promotions/blackfin750/index.html

Analog Dialogue Volume 39 Number 1 15

PRODUCT INTRODUCTIONS: VOLUME 39, NUMBER 1
Data sheets for all ADI products can be found by entering the model

number in the Search Box at www.analog.com

January
ADC, Pipelined, dual 10-bit, 105-MSPS AD9216
ADC, Pipelined, quad 8-bit, 65-MSPS, LVDS outputs AD9289
ADC, Pipelined, 14-bit, 80-MSPS AD9444
ADC, Pipelined, 8-bit, 250-MSPS, CMOS outputs,
 single 3.3-V supply .. AD9481
Amplifier, Operational, low-power, precision, JFET
 input, rail-to-rail output .. AD8641
Amplifier, Operational, dual, high-performance CMOS,
 rail-to-rail outputs ... AD8692
Charge-Pump Driver, 4-channel, LED backlight for
 color LCD display ... ADM8843
Charge-Pump Driver, 6-channel, LED backlight for
 color LCD display ... ADM8845
Comparators, General-Purpose, include voltage
 reference ... ADCMP35x
Comparators, General-Purpose,
 open-drain/push-pull ADCMP370/ADCMP371
Comparators, Dual, high-speed, PECL/LVPECL,
 single supply ADCMP551/ADCMP552
Comparator, Single-Supply, high-speed,
 PECL/LVPECL ... ADCMP553
Controller, Power Supply, high-efficiency,
 dual-output ... ADP3026
Controller, Synchronous-Buck, 1-/2-/3-phase
 adjustable-output ... ADP3182
DC-to-DC Converter, step-up, operates at 1.2 MHz .. ADP1610
Temperature-Sensor, hub and fan controller, up to
 10 remote sensors ... ADT7470
Temperature-to-Digital Converter, 10-bit, includes
 4-channel ADC, quad DAC ADT7519
Temperature Sensors, 0.5C accuracy, pulse-width
 modulated outputs .. TMP05/TMP06

February
Accelerometer, dual-axis, 18-g ADXL321
Embedded Processors, TigerSHARC, 500 MHz/600 MHz,
 24-/12-/4-Mbits on-chip ..
 ADSP-TS201/ADSP-TS202/ADSP-TS203
Supervisor, Power Supply, super sequencer
 and monitor .. ADM1068

March
Amplifier, Operational, 1.5-GHz, ultrahigh-speed,
 current-feedback .. AD8000
Amplifier, Operational, dual, rail-to-rail outputs,
 310 mA output drive ... AD8397
Amplifier, Operational, 20-MHz, precision, CMOS,
 rail-to-rail I/O .. AD8615
Amplifier, Operational, quad, single-supply, zero-drift,
 rail-to-rail I/O ... AD8630
Amplifier, Operational, quad, low-cost, high-speed,
 rail-to-rail outputs ... ADA4851-4
Filter, Video, selectable cutoff frequencies ADA4410-6
ADCs, Sigma-Delta, 3-channel, 16-bit/24-bit,
 low noise, low power AD7798/AD7799
Audio Codec, AC’97 SoundMAX® AD1986
CCD Signal Processor, 2-channel, 14-bit, precision
 timing generator ... AD9942
DAC, Current-Output, 10-bit, 120 mA current sink AD5398
DAC, Current-Output, multiplying, 12-bit, wideband,
 serial interface .. AD5444
DACs, Current-Output, multiplying, 8-/10-/12-bit,
 wideband, serial interface AD5450/AD5451/AD5452
DACs, Voltage-Output, 8-/10-/12-/14-bit, nanoDAC,
 SC70 package AD5601/AD5611/AD5621/AD5641
DAC, Voltage-Output, 16-bit, nanoDAC,
 SOT-23 package ... AD5662
Level Translators, 4-/8-channel,
 bidirectional logic ADG3304/ADG3308

AUTHORS
Patrick Butler (page 3) is a DSP f ield
applications engineer at Analog Devices France,
within the Western Europe sales organization.
For nearly 18 years, he has provided support for
general-purpose DSP and ISM-band RF parts
to French customers. Recently, he has focused
on home video surveillance and industrial RF
modem markets.

A 1979 engineering graduate, he worked as a
design engineer for Schlumberger ATE (now Credence), AMD, and
Harris Semiconductor. His hobbies include collecting jazz records
and old vintage wines, as well as playing with his two young sons.

Rick Gentile (page 7, 11), who joined ADI in
2000 as a senior DSP applications engineer,
currently leads the Blackfin® DSP applications
group. Before joining ADI, Rick was a member
of the technical staff at MIT Lincoln Laboratory,
where he designed several signal processors used
in a wide range of radar sensors. He received
a BS from the University of Massachusetts at
Amherst and Master of Science degrees from
Northeastern University—in both Electrical
and Computer Engineering. He enjoys sailing,
windsurfing, and spending time with his daughters.

Austin Harney (page 3) graduated from
University College, Dublin, Ireland, in 1999
with a BEng and joined Analog Devices
following graduation. He is currently an
appl icat ions engineer for the ISM - band
wireless product line, based in Limerick. In
his spare time, Austin enjoys football, music,
and spending time with his daughter.

David Katz (page 7, 11) is a senior DSP
applications engineer, involved in specifying
and supporting Blackfin media processors. He
has published dozens of articles on embedded
processors—in both U.S. and international
publications. Previously, he worked at Motorola
as a senior design engineer in cable-modem
and automation groups. David holds BS and
MEng degrees in Electrical Engineering from
Cornell University.

Ching Lam (page 7) is a DSP applications
engineer at the Norwood, Massachusetts facility,
supporting ADI’s Blackfin processors. Joining
Analog Devices in 2001, she is a graduate of
Boston University with a BSEE degree.

Tom Lukasiak (page 11) has been a DSP
applications engineer at Analog Devices since
2000. He is currently focusing on Blackfin
processor products. Tom earned his ScB
(2000) and ScM (2002) degrees in Electrical
Engineering from Brown University.

Purchase of licensed I2C components of Analog Devices
or one of its sublicensed Associated Companies
conveys a license for the purchaser under the Philips
I2C Patent Rights to use these components in an I2C
system, provided that the system conforms to the I2C
Standard Specification as defined by Philips.

© 2005 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are the property
of their respective owners.
Printed in the U.S.A. M02000391-XX-4/05

�����������������������������

Analog Devices, Inc.
Worldwide Headquarters
Analog Devices, Inc.
One Technology Way
P.O. Box 9106
Norwood, MA
02062-9106 U.S.A.
Tel: 781.329.4700
(800.262.5643,
U.S.A. only)
Fax: 781.461.3113

Analog Devices, Inc.
Europe Headquarters
Analog Devices SA
17-19 rue Georges Besse
Antony, 92160
France
Tel: 33.1.46.74.45.00
Fax: 33.1.46.74.45.01

Analog Devices, Inc.
Japan Headquarters
Analog Devices, KK
New Pier Takeshiba
South Tower Building
1-16-1 Kaigan, Minato-ku,
Tokyo, 105-6891
Japan
Tel: 813.5402.8210
Fax: 813.5402.1064

Analog Devices, Inc.
Southeast Asia
Headquarters
Analog Devices
22/F One Corporate Avenue
222 Hu Bin Road
Shanghai, 200021
China
Tel: 86.21.5150.3000
Fax: 86.21.5150.3222

	Editors’ Notes
	40 YEARS OF REAL WORLD SIGNAL PROCESSING
	ANALOG SIGNAL PROCESSING GOES DIGITAL
	FROM NUMBER CRUNCHING TO MULTIMEDIA

	A Smart Modem for Robust Wireless Data Transmission Over ISM Bands (433 MHz, 868 MHz, and 902 MHz)
	A Versatile Transceiver
	Forward Error-Correction with the Blackfin Processor
	Real-World Application—Wireless Video Over ISM
	CONCLUSION
	REFERENCES—VALID AS OF MARCH 2005

	Blackfin® Processor’s Parallel Peripheral Interface Simplifies LCD Connection in Portable Multimedia
	Passive vs. Active
	Components of a TFT-LCD System
	Connecting to TFT-LCD Modules
	Power Requirements
	Clocking and Synchronization
	Data Lines
	System Algorithm Flow
	De-interlacing
	Scan-Rate Conversion
	Chroma Resampling and Color Conversion (YCrCb -> RGB)
	Scaling
	Bit Extraction/Byte Packing
	CONCLUSION
	REFERENCES—VALID AS OF JANUARY 2005

	Enhance Processor Performance in Open-Source Applications
	What is Open Source?
	What is Ogg?
	What is Vorbis?
	What is Speex?
	Optimizing Vorbis and Speex on Blackfin Processors
	Compiler Optimization
	System Optimization
	Instruction Execution
	Data Management
	Assembly Optimization
	FOR FURTHER READING
	REFERENCES—VALID AS OF FEBRUARY 2005

	PRODUCT INTRODUCTIONS: VOLUME 39, NUMBER 1
	AUTHORS
	Patrick Butler
	Rick Gentile
	Austin Harney
	David Katz
	Ching Lam
	Tom Lukasiak

